
ESD-TR-66-653, Vol. II

_. , .^pn COPY

t T JS'Ä°RMMION owaw

MTR-35

ESD ACCESSION LIST
EST» Call No. ! £ Ü *060J__
Copy No. _Z_ of *2^ eys.

COLIN GO C-10 USERS' MANUAL

VOLUME n

MAY 1968

COLINGO Project

Prepared for

,4
)^ rc/^

AIR FORCE COMMAND AND MANAGEMENT SYSTEMS DIVISION
DEPUTY FOR COMMAND SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public

release and sale; its distribution is un-

limited.

Project 512V
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

When U.S. Government drawings, specifica-

tions, or other data are used for any purpose

other than a definitely related government

procurement operation, the government there-

by incurs no responsibility nor any obligation

whatsoever; and the fact that the government

may have formulated, furnished, or in any

way supplied the said drawings, specifica-

tions, or other data is not to be regarded by

implication or otherwise, as in any manner

licensing the holder or any other person or

corporation, or conveying any rights or per-

mission to manufacture, use, or sell any

patented invention that may in any way be

related thereto.

Do not return this copy. Retain or destroy.

ESD-TR-66-653, Vol. II MTR-35

COLIN GO C-10 USERS' MANUAL

VOLUME n

MAY 1968

COLINGO Project

Prepared for

AIR FORCE COMMAND AND MANAGEMENT SYSTEMS DIVISION
DEPUTY FOR COMMAND SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public

release and sale; its distribution is un-

limited.

Project 512V
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

FOREWORD

This report was prepared by The MITRE Corporation, Bedford,
Massachusetts, under Contract AF 19(628)-5165, Projects 504F, 512B, and
512V. Portions were written over the period 15 December 1965 to 23 Feb-
ruary 1968 and provide a complete Users' Manual.

ESD Project Officer: Lt Col James L. Blilie, ESLFE.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

JAMES L. BLILIE, Lt Col, USAF
Chief, Engineering Support Branch

ii

ABSTRACT

The COLINGO C-lO Users1 Manual, a combination of tutorial and
reference material, is presented in two volumes. This volume contains
information on machine configurations, procedures for operating and
loading the system, a description of the C-10 general purpose macro
facility (terses and actors), a guide to the STEP language, a set of
instructions for preparing machine language procedures, and a list of
system error messages.

iii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS viii

SECTION I MACHINE CONFIGURATION 1

INTRODUCTION 1
MINIMUM CONFIGURATION 2
OPTIONAL DEVICES 3
SYSTEM ADAPTATION 4
DISK USAGE 5
VARIATIONS IN CONFIGURATION 6

SECTION II LOADING AND OPERATING PROCEDURES 8

INTRODUCTION 8
LOADING INSTRUCTIONS 10

Loading From Cards Onto Disk 11
Loading From Tape Onto Disk 15
Configuration Instructions 17

Initialization 35

OPERATING PROCEDURES 36

Deck Setup For Loading From Disk 36
Instructions For Loading From Disk 36
Instructions For Using C-10 Language 39

SECTION III INTRODUCTION TO TERSES AND ACTORS 60

INTRODUCTION 60
TERSE DEFINITIONS 63

Argument Specifications 63
Skeleton 67
End Word List 67
Exclusive End Word List 68
Delimiter List 69
Noise Word List 69
Repeat Word List 70
Generated Symbol List 70
Stripping and Parenthetically Well-
Formed Strings 71

A More Precise Explanation of
Argument Fetching 73

Creating More Sophisticated Skeletons 74
DT Is Really A Terse 76

ACTOR DEFINITIONS 77

A Sample Actor: CS 77
DT Is Really An Actor (Almost) 78

v

TABLE OF CONTENTS (Continued)

PREPROCESSING VS. COPROCESSING

SECTION IV STEP

INTRODUCTION
NAMES AND THE ASSOCIATION LIST
EXPRESSIONS

Numbers and Literals
Names
ATOM Form
QUOTE Form
Procedure Form
IF Form
COND Form
PROG Form
GO Form
RETURN Form
ASSIGN Form
DEFINE Form

A FEW PROCEDURES
COMPILING STEP PROCEDURES
THE USES OF STEP LANGUAGE IN C-10
TRACING

SECTION V MODULAR MACHINE LANGUAGE PROCEDURES

RELOCATABLE SUBROUTINES
CALLS AND RETURNS
DYNAMIC SUBROUTINE RELOCATION

Subroutine Loading
Self Modification
Recursiveness

MACROS

BEGIN
CALL
RETRN
FIN
TEARS

INDEX REGISTERS

Description
PR-155 NOFLG Option
Symbolic Use

CLOSED SUBROUTINES 115

Page

79

80

80
81
84

84
85
85
86
87
93
94
95
97
98
98
99

100
102
102
103

105

105
106
107

107
108
109

109

110
111
111
112
112

113

113
114
114

VI

TABLE OF CONTENTS (Concluded)

Page

QTEMP Method 115
Index Register Method 116

DECK MAKEUP 117
EXAMPLES 119

SECTION VI SYSTEM MESSAGES 121

INTRODUCTION 121
MESSAGES 123

APPENDIX I SUMMARY OF LOADING INSTRUCTIONS 145

APPENDIX II C-10 1301 - 1311 DISK ADDRESSES 146

APPENDIX III STEP IN BACKUS NORMAL FORM 147

INDEX 149

vii

LIST OF ILLUSTRATIONS

Figure No. Page

1 Loading Steps 9

2 Loading From Cards 11

3 Data Card and Initialization Deck 12

4 System Deck 13

5 Card Deck Used When Loading from Tape 15

6 Configuration Changes 18

7 Example of Card Setup For Configuration Chage 28

viii

SECTION I

MACHINE CONFIGURATION

INTRODUCTION

"Machine Configuration" refers to (a) the type of equipment

(e.g., processors, memories, disks), (b) the number of each type,

and (c) the channel by which each is attached to the system.

The C-10 system has been designed to operate on a "minimum

configuration" of a 40K core, disk unit, typewriter, card-reader

and printer. Additional optional equipment may also be added.

Additional core and disk units increase the efficiency of the sys-

tem, but not its inherent capabilities. Other optional devices

which may be added to the system include tapes, displays, a remote

inquiry unit and a clock. The exact configuration is stated at

loading time.

MINIMUM CONFIGURATION

A minimum practical configuration for C-10 consists of an IBM

1411 central processor with the smallest available memory and associ-

ated console typewriter; also a card-reader punch, a printer and a

disk storage unit. The following table describes these:

Table I

A C-10 Practical Configuration

ITEM MODEL CHARACTERISTICS

Central Processor 1411-3 40K characters, 4.5 us

Console Typewriter 1415 15cps, 80 characters/line

Disk 1301 or
1302 or

More storage, faster accessi
than 1311

i

Card-reader punch

1311*

1402 i
Printer 1403-2 or

1402-3
|

Priority Alert**

**

If a 1311 disk is not used, some sort of tape must be used to
load the system onto the disk being used.

An interrupt system that provides an automatic branch to a
fixed storage location when certain conditions of the I/O
channels or devices occur.

OPTIONAL DEVICES

In addition to the minimal equipment, C-10 will accept many

Standard IBM devices such as tapes, a clock, etc. Facilities for

a CCC display unit are also built into the system. The table below

lists such optional items.

Table II

Optional Items

ITEM MODEL

Magnetic Tape Units*

Remote Inquiry Unit

Clock

CCC Display Unit

729-2,4,5 or 6 or
7330

TRW

Tapes are necessary in any routine that sorts files; other-
wise they are optional.

SYSTEM ADAPTATION

The C-10 system is capable of restructuring itself to adapt to

various configurations. For instance, if a central memory of 60K is

being used, the C-10 system automatically assigns central memory

space to some procedures that would be kept in disk storage with a

40K central memory. As the system operates, this space-sharing

technique continually shuffles data and procedures from core to disk

in an efficient way.

To be able to adapt to a particular configuration, the system

must, at loading time, be told some information concerning the

configuration. Of course, the system assumes the minimum apparatus

mentioned previously, but it does not necessarily know where these

are located, i.e., on what channel. The only initial assumption is

that there is a typewriter on channel 1. Details pertaining to the

declaration of machine configuration may be found in Section II.

DISK USAGE

C-10 is a disk-oriented system. It occupies only a portion of

the disk, the portion to be occupied being specified at loading time.

More than one disk may be used, with each different disk type attached

to a different channel.

Since C-10 does not occupy all available disk space, it has built-

in checks to assure that no "non-C-10" section of the disk is referenced.

C-10 is designed to allow use of the IBM 1301, 1302 and 1311 disks.

Although the 1301 and 1302 have more storage and faster access than a

1311, they require that one of the tapes listed in the optional config-

uration be used. With a 1311 this is not necessary, because a 1311

disk is detachable, and C-10 can be loaded at one installation and re-

installed at another. A 1301 or a 1302 disk, however, is not detachable;

hence, the system must be loaded onto them from tape.

VARIATIONS IN CONFIGURATION

Assuming a certain minimum configuration, it is not possible to

increase the capabilities of the C-10 system. The efficiency and

performance may be changed, however, by changing the configuration.

The following are some variations in configuration and their effects.

(a) Addition of Optional Devices

These are the items listed in Table II, Optional
Items. They are more likely to increase the per-
formance, by providing different methods of opera-
tion, than to increase the speed of the system.

(b) Addition of More than One I/O Device

This allows for faster and more efficient input-
output operations. Up to 28 of these peripheral
devices may be attached on up to 2 channels.

(c) Larger Central Memory Size

The size of central memory has a large effect on
the performance of the C-10 system. As many C-10
procedures as possible reside in central memory;
the rest are allocated to bulk memory (the disk).

A space-sharing technique decides in an efficient
way what procedures are to occupy central memory
at any moment. Since any procedure that is invoked
that is not in central memory must be fetched from
the disk, the greater the number of procedures that
can reside in central memory, the greater the
efficiency.

(d) Changes in Disk Drive

This also has a large effect on the performance of
the system as a whole. As mentioned previously,
the 1301 and 1302 have larger storage capacity and
faster access, while the 1311 obviates the need for
tape devices.

SFXTION II

LOADING AND OPERATING PROCEDURES

INTRODUCTION

The C-lO System may be stored on cards, tape, or disk. If it

is stored on cards or tape, it must be loaded onto disk before it

can be operated. This loading process is described in the loading

instructions that follow.

All routines in C-10 are stored permanently on disk and may

be brought into memory from disk by the relocatable subroutine

controller. Loading programs directly into core memory from cards

or tape is generally not meaningful. The allocation of the appro-

priate routines to core memory is performed automatically and does

not concern the C-10 user.

After the subroutines have been allocated to disk, and initial-

ization performed, the system is ready for operation as described in

the operating procedures.*

The block diagram (Figure 1) shows the steps in loading from

tape, card, or disk. Under the heading Disk are the steps which

take place under normal use of the system. Thus the four shaded

boxes are actually part of the operating procedures and are explained

under operating procedures.

* If the reader is concerned only with operating the system (C-10
is stored on disk), then he should turn directly to OPERATING
PROCEDURES (page 37).

I IA- 18,4391
_TAPE

^O

CARD P'SK

Operator
loads system
from TAPE

Operator
loads system
from CARDS.

Operator
loods fcoot "•
strap card.

1

i r »
Operator makes
changes in
machine con-
figuration if
necessary.

-'

System ready
System types
SKTfc* tfftHTMG
wvmmtttm

1
System
punches
bootstrap
card.

•

System types:
ENTER STARTING
SUBROUTINE

A "1 r System ready.
System types:
ENTER STARTING
SUBROUTINE

i

To generate
a new tape
type 295

1 1
1
1

I i

•
" 1

1

i
-J

To generate
a new tape,
type 295

i

j toad p*o*r*m*
I Type 23?

1 r
- J i SYSTEM LOADING AND

MODIFYING FROM
To «e«er**e «

t ST** fYTA«>&
Initialize
Type 154

TAPE
CARDS

1 DISK i

Figure 1. Loading Steps

LOADING INSTRUCTIONS

Prior to loading disk from cards or tape, core must be

cleared. After clearing core, the operator loads the cards into

the card reader or the tape onto the tape drive. He then types

an initial 11-character bootstrap instruction.

The C-10 loader receives control and, by interacting with

the operator at the console, determines the hardware configuration

of the computer onto which it has been loaded (the number of

channels, type of disk, etc.)*

10

Loading From Cards Onto Disk

Deck Setup for Loading from Cards

Figure 2. Loading from Cards

11

The initialization deck must be preceded by a card containing

"DATA CARD." The D must start in Column 1.

Column 1

Figure 3. Data Card and Initialization Deck

12

The system deck consists of seven sections followed by

an END CARD. The system deck is supplied as a single unit; it

is not necessary for the deck to be constructed out of its

constituent pieces.

*»
♦ *

i
«I

Figure 4. System Deck

13

Bootstrap Instruction for Loading from Cards

(a) Turn mode switch to DISPLAY; press START.
Type 00247. Blanks should be printed,
since core is empty.

(b) Turn mode switch to ALTER; press START.

Type L(1100257RR

(c) Turn mode switch to ADDRESS SET; press
START. Type 00247.

(d) Turn mode switch to RUN; then press
START.

The system is now prepared to learn what configura-

tion it is to use. This is explained following the tape loading

instructions.

14

Loading from Tape Onto Disk

Deck Setup for Loading from Tape

Note that even when loading from tape, some cards are still

used: the configuration deck (optional) and the initialization deck

(required). Although most of the relocatable production programs

would normally be on tape, any which are not may be included be-

tween the configuration deck and the initialization deck.

Figure 5. Card Deck Used When Loading from Tape

15

Bootstrap Instruction for Loading from Tape*

(a) Turn mode switch to DISPLAY; press START.
Type 00001. Blanks should be printed,
since core is empty.

(b) Turn mode switch to ALTER; press START.

Type Lx^Bx 00012RN

where

x- is the channel designation, either a
left parenthesis, (, for channel 1 or
a right parenthesis,), for channel 2.

x„ is the tape drive number which the
C-10 system tape is on.

(c) Turn mode switch to RUN; press COMPUTER
RESET; press START.

* Note: The tape may be mounted on any drive.

16

Configuration Instructions

As soon as the initial loading instructions stated above have

been executed, a series of questions will be asked by the C-10 loader.

This is to aid the operator to state what apparatus he is using, what

channel each is attached to, etc. The answers are typed in or may be

read in part from the card reader (the optional configuration deck) .

Following this question-answer routine, the system punches out

a bootstrap card which contains, in coded form, details about the

configuration. This bootstrap card is used at a later time when-

ever the operator wishes to use the system.

The following flowchart gives a general description of the

instructions for stating configuration changes. A detailed descrip-

tion follows. The instructions are considered "changes", since the

system assumed certain equipment is present; to state the true con-

figuration, changes (and additions or deletions) are made to this

assumed configuration.

Capital letters indicate actual typed messages, while small

letters indicate an action (by either the system or the operator).

The R's begin responses by the system; the I's begin statements which

are typed by the operator.

17

I Initial Loading Routine)

i
System types:

R THIS IS COLINGO - 10

R TAPE GENERATING FACILITY WAS any name

R WHAT FACILITY IS THIS ?

I ony name

System types:

R IS MACHINE CONFIGURATION ON CARDS?

I YES

I
I NO I blank

—r~
System types:

R ENTER CHANNEL OF CARD READER.

Figure 6. Configuration Changes

Ifi

f Card reader A
\channel typed In)

System reads card
deck terminated by a
card saying FINISHED

System types:

R NEED HELP ?

I NO I blank

f-

/ Enter disk \
I allocation J ^

I YES

System outputs
a list of input
statements

System types:
ANY CONFIGURATION CHANGES?

System types:

R ENTER DISK ALLOCATION

(

System is
loaded onto

disk

(Initialization \
IV routine J

Figure 6(Concluded). Configuration Changes

19

Format for Stating Configuration Changes

A configuration change is made by typing an input

statement which consists of a key word followed by some special

parameters separated by commas. In a few cases, the input statement

may consist of just a key word with no parameters. Thus input state-

ments for stating configuration changes are of the form:

key word,parameter 1,parameter 2,...

or

key word

The key words must begin in Column 1. The following are the

permissible key words:

HELP
CLEAR
CLOCK
PUNCH
DELETE
CONSOLE
PRINTER
DESCRIBE
FINISHED
NO. TAPES
1301 DISK
1302 DISK
1311 DISK
TAPE SELECT
CARD READER
AUTO START
CORE SIZE

HELP, CLEAR, FINISHED, CLOCK and AUTO START are the only key words

which may be used by themselves as input statements.

20

(a) HELP

This key word causes the system to type out
a list of key words and input statements.
This is to aid the operator in starting a
configuration change when he is unfamiliar
with the format for doing so.

(b) CLEAR

This key word clears the system of all know-
ledge of the current configuration. The
entire configuration must now be restated.

(c) FINISHED

This key word is used when all necessary
configuration changes have been stated.

(d) CLOCK

This key word announces the presence of a
clock.

(e) AUTO START

This key word is used to announce the existence
of the auto start feature on this machine.

The following describes the acceptable input statements

which need parameters applied to them. Note that in all cases the

first word is one of the key words listed above. The words follow-

ing are parameters (with the exception of DELETE,...which begins

with two key words) into which values must be substituted. When

the parameter "channel" appears, one of the integers, 1 or 2, must

be substituted to specify the channel under discussion. No spaces

may occur within an input statement.

21

If the operator is loading from a tape (or card deck)

not made at that facility, he should ask to have the two channels

described (a command exists for doing so; see below), and make the

appropriate changes to the assumed configuration.

It is possible to state the actual configuration

changes on cards, or the typewriter, or a combination of the two.

(f) DESCRIBE, Channel

This is a request for the system to type out
a list of the equipment attached (as far as the
system is aware) to the indicated channel. If
the tape or card deck has ever been loaded be-
fore, a configuration has been stated, and this
configuration is remembered by the system. For
this reason it is a good idea to have both
channels described whenever loading.

Example:

Example:

Example:

DESCRIBED

(g) CORE SIZE,Number

Only 40K, 60K, or 80K core sizes may be
specified.

CORE SIZE,60K

(h) PUNCH, Channel.Device No.

This key word indicates a card punch. Device
number is used when more than one punch is
available. If there is only one punch, this
parameter may be left blank.

PUNCH,2

22

(i) NO. TAPES,Channel,Number

This key word is used to state the number of
tapes. If there are tapes on both channels,
two separate statements must be used.

Example:

NO. TAPES,1,5

(j) PRINTER,Channel,Device No.

This key word refers to a line printer which
prints 132 characters per line.

Example:

PRINTER,1,1

(k) CONSOLE,Channel,Device No.

This key word refers to the typewriter.

Example:

CONSOLE,2,1

(1) CARD READER,Channel,Device No.

Example:

CARD READER,1,1

(m) TAPE SELECT.Channel.Unit.Unit...

This key word denotes that tapes are attached
on the indicated channel, and that the drives
may be set to any of the unit select lines
stated.

Example:

TAPE SELECT,2,0,2,4,6,8

23

(n) 1301 DISK,Channel,Module,Access,
Begin Track,End Track

The disk module is represented by an integer
from 0-9, the access by a 0 or 1. Begin track
and end track are four-digit numbers indicating
the track boundaries that the system is to
occupy. Care should be taken so as not to
reference disk space occupied by other non C-10
users. A 1302 disk is also acceptable with the
same type parameters.

(o) 1311 DISK,Channel,Begin Track,End Track

There are no module and access parameters used
to refer to a 1311 disk. However, in the begin
track and the end track parameters, the 1311 disk
addresses must be converted to 1301 form in
accordance with C-10 disk mapping. See Appendix II«
No disk configuration is assumed; every time the
system is loaded the disk configuration must be
stated.

(p) DELETE,Input Statement

The keyword DELETE, followed by one of the input
statements, will delete the particular
apparatus (on the particular channel, etc.)
mentioned in the input statement.

24

Example 1

= 00000
D 00001
D bbb
bbbbbbbbbbbbbbbbbbbbbbbbbbb
A t(B100012Rfj
B 00001
R THIS IS COLINGO-10
R TAPE GENERATING FACILITY WAS MITRE
R WHAT FACILITY IS THIS?
I MITRE
R IS MACHINE CONFIGURATION ON CARD?
I YES
R ENTER CHANNEL OF CARD READER
I 1
R ANY CONFIGURATION CHANGES?
I HELP
R KEYWORDS
R
R HELP
R CLEAR
R CLOCK
R PUNCH
R DELETE,
R CONSOLE
R PRINTER
R DESCRIBE
R FINISHED
R NO. TAPES
R 1301 DISK
R 1302 DISK
R 1311 DISK
R TAPE SELECT
R CARD READER
R AUTO START
R CORE SIZE
R
R

25

Example 1 Continued

R INPUT STATEMENT
R
R CLEAR
R CLOCK
R AUTO START
R DESCRIBE,CHANNEL
R CORE SIZF,NUMBER
R PUNCH,CHANNEL,DEVICE NO.
R NO. TAPES,CHANNEL,NUMBER
R PRINTER^CHANNEL^DEyiCE NO.
R CONSOLE,CHANNEL,DEVICE NO.

R CARP» READER, CHANNEL, TEVICF NO.
R TAPE SELECT,CHANNEL,UNIT,UNIT,...
R 1311 DISK,CHANNEL,BEGIN TRACK,CND TRACK
R 1301 DISK,CHANNEL,MODULE,ACCESS,PECIN TRACK,END TRACK
R 1302 DISK,CHANNEL,MODULE,ACCESS,BEGIN TRACK,END TRACK
R
R DELETE, INPUT STATEMENT
R
R
R ANY CONFIGURATION CHANGES?
I 1311 DISK,2,0200,0800
I FINISHED

The first four lines are the initial loading routine. The state-

ment THIS IS COLINGO-10 indicates that the initial loading section was

successfully completed. The R's before each line denote response and

precede questions and statements by the system. The I's denote inquiry

and are typed by the person sitting at the typewriter (Inquiry Request

Button).

26

Lines 9 and 10 say that the system was loaded at The MITRE

Corporation. A deck setup similar to that shown on the following

page was used with the card reader on channel 1. The system then

asked if there were any changes in the configuration. By typing

HELP, (line 16), he causes the system to print out a list of key

words and input statements. After this list was typed by the sys-

tem, it asked if there were any configuration changes to be made.

The operator typed in that there was a 1311 disk on channel 2 with

beginning and end track numbers of 0200 and 0800 respectively.

Since this was the last change to be made, he then typed in the

key word FINISHED. At this point, the system normally punches out

the bootstrap card; but, since the punch was not ready, the system

asked the operator to ready it (READY PUNCH).

27

I

FINISHED

CARO READER, 1,1

PRINTER, !, I

CONSOLE, I, I

1311 DISK, 2,0360, 0800

CORE SIZE, 40K

AUTO START

CLEAR

Figure 7. Example of Card Setup for Configuration Change

28

Example 2

= 00000 _
D 00001
D bb
bb
A C(B100012Rfi
B 00001
R THIS IS COLINGO-ljJ _
R TAPE GENERATING FACILITY WAS MITRF
R WHAT FACILITY IS THIS?
I MITRE
R IS MACHINE CONFIGURATION ON CARD?
I NO

_R NEED HEXP? . _
I
R ANY CONFIGURATION CHANGES?
I DESCRIBE,1
R CONSOLE,1,1 ._. .
R PRINTER,1,1

. R PUNCH, Ul
R CARD RFADER,1, 1
R TAPE SELECT,1,0
R TAPP SELECT,1,1
R TAPE SELECT,1,2
R TAPE SELECT,1,3

J* TAPE SELECT, 1^
R TAPE SELECT,1,5
R TAPE SELECT,1,6
R TAPE SELECT,1,7
R TAPE SELECT,1,8
R TAPE SELECT,1,9
R NO, TAPES,1,5 _ .
I DELETE,TAPE SELECT,1,0,2,4,6,8
I TAPE SECEL
I TAPE SELECT,2,0,2,**,6,8
I PUNCH,2,2
I CARD READER,2,3

_1 CARD READER, 1,5
I CONSOLE,1,3
I PRINTFR,l,<t
I PUNCH,1,2
I DESCRIBE,1
R CONSOLE,1,1
R PRINTER, 1,1

29

Example 2 (Continued)

R PUNCH,1,1
R CARD READER,1,1
R TAPE SELECT,1,0
R TAPE SELECT,1,1
R TAPE SELECT,1,2
R TAPE SELECTaX.3

TAPE SELECT,1,«* R
R TAPE SELECT,1,5
R TAPE SELECT,1,6
R TAPE SELECT,1,7
P TAPE SELECT,1,8
P TAP* SELECT,1,9
R CARD READER,1,5
R CONSOLE,1,3
R PRINTER,1,4
P PUNCH,1,2
R NO. TAPES,1,5
I FINISHED

Example 3

_P 00001
D bb
bb
bbbbbbbbbb
A CCB100012RR
B 00001

_R-TH_LS_I_S COUNGQ-10
R TAPE GENERATING FACILITY WAS MITRC

R WHAT FACILITY IS THIS?
I MITRE
R IS MACHINE CONFIGURATION ON CARP?
I YES

_R_ENTER CHANNEL OF CARD READER
I 1
R ANY CONFIGURATION CHANGES?
I NO

30

Example 4

= 00000
0 00001
D bbbbb^bb
bbbbbbbbbbbbbbbbbbbbbbbbbbb
A n(B100012R*
B 00001
R THIS IS COL I NGO-10
R TAPE r.TNFRATIN^ FACILITY WAS MITRC

R WH,'<T FACILITY IS THIS?
1 MITRE
R IS MACHINE CONFIGURATION ON CARD?
I YFS
R CNTER CHANNEL OF CARD PFADFR
I 1
R ANY CONFIGURATION CHANGES? .
I DELETE,1311 DISK,2
I 1311 DISK,2,0360,0800
I DESCRIBE,1
R CONSOLE,1,1
R PPTNTER,1,1
R PUNCH,!, 1 _
R CARD PFADER,1,1
R TAPE SELECT,1,0
R TAPE SELFCT,1,1
R TAPE SELFCT,1,2
R TApr SELECT,1,3
R TAPE SELECT, 1,A„.
R TAPF SELECT,1,5
R TAPE SELECT,1,6
R TAPF SELECT,1,7
R TAPE SELECT,1,8
R TAPE SELECT,1,9
R NQ^.JTAPES^l, 5
I FINISHED
R READY PUNCH

31

Example 5

= P0000
D 00001
D bb
bbbbbbbbbbbbbbbbbbbb
A nC°100012Rri
P 00001
R THIS IS COLINCO-10
R T^PC GENERATING FACILITY WAS MITRE
R W-'AT FUTILITY IS THIS?
I I P.M
R IS MACPIW CONFIGURATION ON GARD?
I NO
P NEFO HELP?
I
R ANY CONFIGURATION CHANCPS?
I n^SCRIBF,l
R CONSOLE, 1, 1
P PRINTER,1,1
R PUNCH,1,1
P, CARD READER, 1, 1
R TAPE SELECT,1,0
R TAPE SELECT,1,1
P TAPE SELECT,1,2
R TApr- SELECT,1,3
R TAPE SPLrCT,1,4
R T^P^ SELECT, 1,5
R TAPE ScLfCT,1,6
R TAPF SELrCT,l,7
R TAPE SELECT,1,8
R TAPE ScLeCT,1,9
P "0. TAPrs,l,S
i orsc<u»F,2
P »'0. TAPES,2,!

I 1311 DISK,2,0200,1640
I nrSCRir.E,2
R NO. TAPES,2,!
P 1311 DISK
I FINISHED

32

Example 6

= 00000
0 00001
D bb
bbbbbbbbbbbbbbbbbbbbbbbbb
A C(B1000l2Rfl
0 00001
R THIS IS COLINGO-10
R TApr GPNERATINir- FACILITY W^S MITRF
R WHAT FACILITY IS THIS?
1 MITRE
P IS MACHINE CONFIGURATION ON CAR")?

R Kerrr^ HELP?
I YES
R KEYWORDS
R
R HELP
R ^LEAR
P CLOCK
R PUNCH
R DELETE,
P CONSOLE
P PRINTER
R OESCRJ-Rc - - -
P FINISHED
R MO. TAPES
P 1301 DISK
R 13^2 DISK
R 1311 DISK

. R_ TAPE SELECT -
R CARD READER
R AUTO START
R rORc SIZE
R
R
R INPUT STATEMENT - .. . - ,
R
R CL^AR
R CLOCK
R AUTO START
R DESCRIBE,CHANNEL
R COSE SI3£,NUMAER
R PUNCH,CHANNEL,^£VI^C NO.
R NO. TAPES,CHANNEL,NUMBER
R PRINTER,CHANNEL,DEVICE NO.
R CONSOLE,CHANNEL,DEVICE NO.
R CARD READER,CHANNEL,DEVICE NO.
-R- TAPF SELECT, CHANNEL, UWI TjUNIT-y—, ,
R 1311 DISK,CHANNEL,PECIN TRACK,END TRACK
R 1301 DISK,CHANNEL,MODULE,ACCESS,BEGIN TRACK,»"NO TRACK
R 1302 DISK,CHANNEL,MODULE,ACCESS,«EG1W TRACK,CND TRACK
R
R DELETE, INPUT STATFMENT

33

Example 6 (Continued)

R
R ANY CONFIGURATION CHANGES?
I PeSCRIp,-,l
P. CONSOLE, 1, 1
P. PRINTED, 1,1
R PUNCH., I,-!
R CARD R^ADE?, 1, 1
R TAPF SELrCT,1,0
R TATF SELECT,1,1
R TAP^ SELECT,1,2
R TAP^ SELECT,1,3
n TAPP SELECT, 1,**
R TAPE SELECT, 1,5
R TAPE SELECT, 1,6
R TAPE SELECT,1,7
R TAPE SELECT,1,8
R TAPE SELECT,1,9
R NO. TAPES,1,5
I r>FSCRI°V
I DPSCPI^r,2
P NO. TAP«-S,2,!
I nFLETf,NO. TAPES,2
I DFSCRO*F,2
I OESCI
I DFSCRIpr,2
I 1311 DISK, 2, 0200,161*0
I DFSCRnF,2
R 1311 DISK
I FINISHED

34

Initialization

After the system has been loaded onto disk, and before

it can be run, the initialization process must be used to clear

the portions of the disk that are needed for data storage. This

process also initializes such functions as STEP, the Master Index,

block management, disk allocation, etc. The initialization deck

has already been put in the card reader behind the RELOCATABLE

PRODUCTION PROGRAMS deck (see Figures 2, 3 and 5). It is only

necessary to type 154, the number of the initialization subroutine,

However, initialization should not begin until an ENTER STARTING

SUBROUTINE message appears.

R ENTER STARTING SUBROUTINE

I 154

R ENTER STARTING SUBROUTINE

Re-initialization may also be done at any later time where it is

desired to ,!wipe the disk clean" of file structures and procedures,

Caution should be taken in this operation, however, so as not to

lose wanted procedures. Re-initialization is accomplished as

described for initialization above.

35

OPERATING PROCEDURES

The operating procedures essentially explain how to operate

C-10 from disk once it has been loaded from tape or card onto disk.*

Deck Setup for Loading from Disk

Single bootstrap card (punched by system at tape or card load

time) is needed.

Instructions for Loading from Disk

(a) Ready card reader with single bootstrap card.

(b) Turn mode switch to DISPLAY; press START; type 00001

(c) Turn mode switch to ALTER; press START; type

I(1100012RK

(d) Turn mode switch to RUN; press COMPUTER RESET;

press START.

(e) ENTER STARTING SUBROUTINE is printed out. At this time,

the number of any C-10 subroutine to be executed may be

entered. Normally, 237 is entered to call the EXEC and

begin normal operation. Examples of other uses include

154 for initialization (see above) and 295 to generate a

new C-10 system tape.

*If the system has just been loaded from tape or cards, these steps
are not necessary, and ENTER STARTING SUBROUTINE should appear auto-
matically after the Initialization process.

36

—

Example 8

This is an example of loading from tape onto disk and

then from disk into memory.

D 00001
D bbb

A L(B000012RN
B 00001

R THIS IS C-10
R WHAT FACILITY IS THIS?
I IBM
R IS MACHINE CONFIGURATION ON CARD?
I NO
R NEED HELP?
I NO
R ANY CONFIGURATION CHANGES?
I 1311 DISK,2,0200,1640
I DESCRIBE,2
R NO.TAPES,2,1
R 1311 DISK
I FINISHED
R READY PUNCH
R ENTER STARTING SUBROUTINE
I 154
R ENTER STARTING SUBROUTINE
I 237
R 13.53 05JAN66
R PROFILE READY

37

Example 9

This example illustrates loading directly from

disk (using the bootstrap card). Starting with line 9, two STEP

programs are also shown.

D 00001
D bb

A L(1100012RR
B 0(5001
R ENTER STARTING SUBROUTINE
I 237
R 14.58 10JAN66
R PROFILE READY
I STEP(PRINT(MIRE «TOCS' »BA))
R ((PROG() (SETG 11 NIL) (SUPERCLA NIL) (PRINT

MIRE 'TOCS 'BA)) (FILEOUT) (RETURN NIL)))
R NIL
R PROFILE READY
I STEP(SORTR)
R ((PROGO (SETG 11 NIL) (SUPERCLA NIL) (SORTR)

(FILEOUT) (RETURN NIL)))
R
R NIL
R PROFILE READY

38

Instructions for Using C-10 Languages

In the operating procedures below, we make the distinction

between hard procedures and soft procedures. A hard procedure is a

procedure which has been added to the system ultimately in the form of

relocatable 1410 machine code. A soft procedure is a procedure which

has been added to the system ultimately in STEP interpretable form.

Procedures which have not been added to the system are neither hard

nor soft.

Procedures may be written in three languages: PROFILE, STEP, or

AUTOCODER. Procedures in PROFILE or STEP may contain terses and actors.

Soft procedures are easy to enter into the system. Hard procedures

are not as easy to enter into the system because it is necessary for the

procedure to be assigned a number by a member of the C-10 maintainence

group, it must be processed off-line by the AUTOCODER assembler, and

the "BEGIN macro" must be changed prior to its assembly. Soft procedures

may appeal to any procedure. Hard procedures may appeal only to hard

procedures.

Procedures written in AUTOCODER are necessarily hard procedures.

Procedures written in PROFILE or STEP may become either hard procedures

or soft procedures.

Two versions of all hard procedures may be maintained by the

system: an "experimental" version and a "production" version. Only

one version of soft procedures is maintained by the system. The C-10

system may be operated in two modes: experimental or production. In

experimental mode all existing experimental versions of hard procedures

are used in conjunction with the production versions of those procedures

for which there are no experimental versions. In production mode, only

production versions of procedures are used.

39

The charts below provide instructions for entering and

executing messages, for adding procedures to the system, for converting

soft procedures into hard procedures, for changing the mode of system

operation from production to experimental, for aborting messages, and

for changing the "standard" input and output devices. The order of

the charts is as follows:

I. To enter and execute PROFILE statements which contain no

terses or actors.

II. To enter and execute PROFILE statements which contain pre-

processor terses or actors.

III. To enter and execute PROFILE statements which contain co-

processor terses or actors.

IV. To enter and execute PROFILE statements which contain both

pre-processor and co-processor terses and actors.

V. To enter and execute STEP expressions which contain no terses

and actors.

VI. To enter and execute STEP expressions which contain pre-

processor terses or actors.

VII. To add a PROFILE procedure to the system as a soft procedure.

VIII. To add a STEP procedure to the system as a soft procedure.

IX. To convert a soft procedure into a hard procedure.

X. To add an AUTOCODER procedure to the system.

XI. To load AUTOCODER object decks as Experimental hard procedures.

XII. To load AUTOCODER object decks as Production hard procedures.

XIII. To change the mode of system operation from Production to

Experimenta1.

40

XIV. To abort the execution of a message.

XV. To change the standard input and output devices.

XVI. To compile PROFILE statements directly into AUTOCODER.

XVII. To compile STEP expressions directly into AUTOCODER.

Additional information may be found in the next Section,

Executive/Editor.

41

CHART I: To Enter and Execute PROFILE statements which contain no

terses or actors.

Step

1

Action

Ready card reader with
single bootstrap card.

Turn mode switch to
DISPLAY; press START;
type 00001.

*Turn mode switch to
ALTER- press START;
type L(1100012RS.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

Turn mode switch to
RUN; press START.

6 Type 237.

7 Type PROFILE state-
ments followed by a
" A."

Remarks

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is in
core, steps 1 through 5 may be
avoided by branching to location 39000.
and typing 30 when the system responds
"SELECT SUBROUTINE."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY."

The PROFILE statements will be
automatically translated into
STEP language and executed as a
soft procedure by the STEP in-
terpreter. The system will respond
"PROFILE READY" after execution,
whereupon new statements may be
entered.

*The funny looking character above the L and above the R is a "word
mark" and is typed by depressing the WORD MARK key before typing
L or R.

42

CHART II: To Enter and Execute PROFILE statements which contain
pre-processor terses or actors.

Action Remarks

10

Ready card reader
with single bootstrap
card.

Turn mode switch to
DISPLAY; press START;
type 00001.

Turn mode switch to
ALTER: press START;
type i(1100012RÄ.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

5 Turn mode switch to
RUN; press START.

6 Type 237.

7 Turn mode switch to
DISPLAY; press START;
type 37651.

Turn mode switch to
ALTER; press START;
type J.

Turn mode switch to
RUN; press Start.

Type PROFILE statements
followed by a "A."

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is in
core, steps 1 through 5 may be avoided
by branching to location 39000, and typing
30 when the system responds "SELECT
SUBROUTINE."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY."

The PROFILE statements will be
automatically processed by TAP,
translated into STEP language and
executed as a soft procedure by the
STEP interpreter. The system will
respond "TAP READY" after execution
whereupon new statements may be entered.

43

CHART III: To Enter and Execute PROFILE statements which contain
co-processor terses or actors.

Step

1

6

7

10

Action

Ready card reader
with single bootstrap
card.

Turn mode switch to
DISPLAY; press START;
type 00001.

Turn mode switch to
ALTER- press START;
type £(1100012R8.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

Turn mode switch to
RUN; press START.

Type 237.

Turn mode switch to
DISPLAY; press START;
type 37650.

Turn mode switch to
ALTER; press START;
type J.

Turn mode switch to
RUN; press START.

Type PROFILE statements
followed by a " £."

Remarks

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is
in core, steps 1 through 5 may be
avoided by branching to location
39000, and typing 30 when the system
responds "SELECT SUBROUTINE."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY."

The PROFILE statements will be
automatically processed by TAP, trans-
lated into STEP language and executed
as a soft procedure by the STEP
interpreter. The system will respond
V. TAP READY1' after execution, where-
upon new statements may be entered.

44

CHART IV: To Enter and Execute PROFILE statements which contain both
pre-processor and co-processor terses and actors.

8

9

10

Action

Ready card reader
with single bootstrap
card.

Turn mode switch to
DISPLAY; press START;
type 00001.

Turn mode swtich to
ALTER- press START;
type L(1100012RR.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

5 Turn mode switch to
RUN; press START.

6 Type 237.

7 "Turn mode «witch to
DISPLAY; press START;
type 37650.

Turn switch to ALTER;
press START; type JJ.

Turn mode switch to
RUN; press START.

Type PROFILE statements
followed by a "£."

Remarks

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is in
core, steps 1 through 5 may be avoided
by branching to location 39000, and
typing 30 when the system responds
"SELECT SUBROUTINE."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY."

The PROFILE statements will be auto-
matically processed by TAP, translated
into STEP language and executed as a
soft procedure by the STEP interureter.
The system will respond "TAP READY"
after execution, whereupon new state-
ments may be entered.

45

CHART V: To Enter and Execute STEP expressions which contain no
terses or actors.

9

10

Action

Ready card reader
with single bootstrap
card.

Turn mode switch to
DISPLAY, press START;
type 00001.

Turn mode switch to
ALTER- press START;

type t(iigfgfQfi2R8.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

5 Turn mode switch to
RUN; press START.

6 Type 237.

7 Turn mode switch to
DISPLAY; press START;
type 37652.

Turn mode switch to
ALTER; type 2.

Turn mode switch to
RUN; press START.

Type STEP expressions
followed by a "A."

Remarks

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is in
core, steps 1 through 5 may be avoided
by branching to location 39000, and
typing 30 when the system responds
"SELECT SUBROUTINE."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY."

The STEP expressions will be evaluated
by the STEP interpreter. The system
will respond "STEP READY" after
execution, whereupon new statements
may be entered.

46

CHART VI: To Enter and Execute STEP expressions which contain pre-
processor terses or actors.

Action

Ready card reader
with single bootstrap
card.

Remark

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is in
core, steps 1 through 5 may be avoided
by branching to location 390010, and
typing 30 when the system responds
"SELECT ROUTINE."

10

Turn mode switch to
DISPLAY; press START;
type.00001.

Turn mode switch to
ALTER; press START;

type E(HQ)^12RX.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

5 Turn mode switch to
RUN; press START.

6 Type 237.

7 Turn mode switch to
DISPLAY; press START;
type 37651.

Turn mode switch to
ALTER; type J2.

Turn mode switch to
RUN; press START.

Type STEP expressions
followed by a "A."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY."

The STEP expressions will be evaluated
by the STEP interpreter. The system
will respond "STEP READY" after execution,
whereupon new statements may be entered.

47

CHART VII: To Add a PROFILE procedure to the system as a soft
procedure.

Step Action Remarks

1 Enclose the procedure A soft PROFILE procedure is defined
in a procedure declar- when a PROFIIJE procedure declaration
ation (see ESD-TR-66- is translated into STEP language and
653, Vol. I, Section executed.
III).

2 Enter and execute the See CHART I.
procedure declaration

48

CHART VIII: To Add a STEP procedure to the system as a soft procedure.

Action

Enclose the procedure
in a DEFINE form (see
Section IV, page 99.)

Execute the DEFINE form.

Remarks

Soft procedures are defined when
the STEP interpreter processes an
appeal to the procedure DEFINE
(See Section IV.) Hence, this opera-
tion may actually occur in the middle
of the execution of any STEP procedure
or expression or, for that matter,
during the execution of any PROFILE
procedure.

See CHART V.

49

CHART IX: To Convert a Soft Procedure into a Hard Procedure.

Step

1

6

7

Action

Ready card reader
with single bootstrap
card.

Turn mode switch to
DISPLAY; press START;
type 00001.

Turn mode switch to
ALTER* press START;
type 1(11000121$.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

Turn mode switch to
RUN; press START.

Type 237.

Type
STEP (XLSTEP QUOTE f.
QUOTE f2)

Add the AUTOCODER
procedure to the
system.

Remarks

Steps 1 through 5 "load" C-10 from
disk. If "select subroutine" is in
core, steps 1 through 5 may be avoided
by branching to location 39000, and
typing 30 when the system responds
"SELECT SUBROUTINE."

System responds "ENTER STARTING
SUBROUTINE."

System responds "PROFILE READY'."

f- is the name of the existing soft
procedure and f? is the name of the
future hard procedure. The system will
punch out an AUTOCODER deck and respond
"PROFILE READY" when compilation is
complete.

See CHART X.

50

CHART X: To Add an AUTOCODER Procedure to the System

Action

Get a number.

Remarks

Each subroutine which is to be added
eventually to the C-10 system must be
assigned a number in the subroutine
directory. Routine numbers are assigned
by a member of the C-10 maintainence
group.

Change BEGIN macro. An addition must be made to the BEGIN
macro. This consists of equating the
subroutine name with the number assigned
to it in the subroutine directory. This
addition is usually made by the member
of the C-10 maintainence group who allocates
subroutine directory numbers.

Check deck setup. The symbolic deck of the AUTOCODER pro-
cedure should be structured as indicated
below:

6 16 21
MDN$$ JOB Programmer, project,

dept, room
M0N$$ EXEQ AUTOCODER,,,NOFLG

TITLE Subroutine-name
HEADR (for the top of each page)
PST (if cross reference

listing desired)
BEGIN subroutine-name,

number of arguments,
number of words of
temporary storage, type

(AUTOCODER statements)
FIN
END

51

CHART X: To Add an AUTOCODER Procedure to the System (continued)

Action

Submit deck for
assembly.

Load object deck
as either an
"Experimental1' or a
"Production" deck.

Remarks

A special version of PR-155, containing
all C-10 macros and labeled "PALERMO
C-10" is kept at the 1410 console in
Bedford. The deck described above may
be submitted with a 1410 request card on
which is stated "please use PR-155
PALERMO C-10."

Since the BEGIN macro expansion generates
many pages of system definitions at the
beginning of every assembly listing, an
option to suppress this printout has been
made available. If the option is specified
PR-155 will generate its output listing
on a magnetic tape rather than the
printer. SELECT SUBROUTINE may then be
used to print the tape, skipping the
system definitions included in the BEGIN macro.
If macro suppression is desired, the words
"macro suppression" should be added to
the request card.

The result of an AUTOCODER assembly is
an "object deck", punched on cards.

See Chart XI or Chart XII.

52

CHART XI: To Load AUTOCODER Object decks as Experimental Hard Procedures

Action Remarks

Check deck setup. More than one object deck may be loaded
at a time. The object decks should be
stacked together and preceded by a card
punched with the words "RESET EXPERIMENTAL."
The word RESET must begin in Column 1.

Z

RESET EXPERIMENTAL

Ready card reader with
single bootstrap card.

Steps 2 through 6 "load" C-10 from disk.
If "select subroutine" is in core, Steps
2 through 6 may be avoided by branching
to location 39000, and typing 30 when the
system responds "SELECT SUBROUTINE."

7

8

Turn mode switch to
DISPLAY; press START;
type 00001.

Turn mode switch to ALTER;
press START; type

I(110O012R$.

Turn mode switch to
ADDRESS SET; press
START; tjpe 00001.

Turn mode switch to
RUN; press START.

Ready card reader with
deck.

Type 237.

System responds "ENTER STARTING SUB-
ROUTINE."

System will respond "PROFILE READY." The
object decks have been loaded at this
time. PROFILE statements may be entered.

53

CHART XII: To Load AUTOCODER Object decks as Production Hard Procedures

Action

Check deck setup.

Remarks

More than one object deck may be loaded
at a time. The object decks should be
stacked together and preceded by a card
punched with the words "LOAD PRODUCTION."
The word LOAD must begin in Column 1.

t

LOAD PRODUCTION

6

7

Ready card reader
with single bootstrap
card.

Turn mode switch to
DISPLAY; press START;
type 00001.

Turn mode switch to
ALTER- press START;
type L(1100012RK.

Turn mode switch to
ADDRESS SET; press
START; type 00001.

Turn mode switch to
RUN; press START.

Ready card reader with
deck.

Steps 2 through 6 "load" C-10 from disk.
If "select subroutine" is in core, Steps
2 through 6 may be avoided by branching to
location 39000, and typing 30 when the
system responds "SELECT SUBROUTINE."

System responds "ENTER STARTING SUB-
ROUTINE."

System will respond "PROFILE READY."
The object decks have been loaded at
this time. PROFILE statements may be
entered.

8 Type 237.

54

CHART XIII: To change the mode of system operation from Production to
Experimental

Step

1

5

6

Action

Ready card reader with
single bootstrap card.

Turn mode switch to
DISPLAY; press START;
Type 00001.

Turn mode switch to
ALTER« press START;
type 2(1100012R}L

Turn mode switch to
ADDRESS SET; press
START; type 00001.

Turn mode switch to
RUN; press START.

Ready card reader with
"USE EXPERIMENTAL"
card.

Type 237.

Remarks

Steps 1 through 5 "load" C-10 froir disk.
If "select subroutine" is in core, Steps
1 through 5 may be avoided by branching
to location 39000, and typing 30 when
the system responds "SELECT SUBROUTINE."

"USE EXPERIMENTAL" should be punched
in columns 1 through 16.

System will respond "PROFILE READY."
PROFILE statements may be entered.

55

CHART XIV: To abort the execution of a message

Step

1

Action

Press INQUIRY

Type ABORT if
execution is to be
terminated; type GO
if execution is to
be continued.

Remarks

System should respond "TYPE GO OR
ABORT."

56

CHART XV: To change the "standard" input and output devices

Action

The system should
be set up to accept
either STEP or PROFILE
messages.

If the system is accept-
ing STEP messages, type
(CHIPS I.D. O.D.) 6
Where I.D. is an accept-
able input device and
O.D. is an acceptable
output device.

If the system is accepting
PROFILE messages, type
STEP (CHIPS I.D. O.D.)A
Where I.D. is an
acceptable input device
and O.D. is an accept-
able output device.

Acceptable input devices
are CARDS or CONSOLE.
Acceptable output devices
are CARDS, CONSOLE or
PRINTER.

Acceptable input devices are
CARDS or CONSOLE. Acceptable
output devices are CARDS,
CONSOLE, or PRINTER

51

CHART XVI: To compile PROFILE statements directly into AUTOCODER

Step Action

1 Follow Chart I, II, III,
or IV to set up system
for PROFILE statements;
but do not enter state-
ment s.

2 Turn mode switch to
DISPLAY; press START;
type 37654.

3 Turn mode switch to
ALTER; press START;
type 52.

4 Turn mode switch to
RUN; press START.

5 Type PROFILE statements
followed by a "A."

Remarks

Use Chart I for no terses or actors,
Chart II for pre-processor terses or
actors, Chart III for co-processor
terses or actors, Chart IV for both
pre-processor and co-processor terses
and actors.

The PROFILE statements will be
automatically translated into AUTO-
CODER and a deck will be punched. No
execution will take place. The
system will finally respond "PROFILE
READY," or "TAP READY."

58

CHART XVII: To compile STEP expressions directly into AUTOCODER

Action Remarks

Follow Chart V, or Use Chart VI for terses and actors,
Chart VI to set up system Chart V otherwise,
for STEP expressions, but
do not enter expressions.

Turn mode switch to DISPLAY;
press START; type 37654.

Turn mode switch to ALTER;
press START; type 52.

Turn mode switch to RUN;
press START.

Type STEP expressions The STEP expressions will be auto-
followed by a "A." matically translated into AUTOCODER

and a deck will be punched. No
execution will take place. The
system will finally respond "STEP
READY," or "TAP READY."

59

SECTION III

INTRODUCTION TO TERSES AND ACTORS

INTRODUCTION

TAP is a facility provided by C-10 for performing string operations

on an input message. TAP processes its input message from beginning to

end, performing its operations when it encounters key words in the message.

TAP receives its input message from the Editor, which has broken it down

into a sequence of atoms. For example, TAP would receive the message

FIND AIRFIELD, 1800, 75, BOSTON, 50;

as the sequence of atoms

FIND

AIRFIELD

1800

75

BOSTON

50

As far as TAP is concerned, there are three types of atoms in

the input message: atoms of type terse, atoms of type actor, and atoms

which are neither type terse nor actor. TAP knows which atoms are the

names of terses and actors because it has a list of all the terses and

actors in the system.

60

Associated with each terse name in TAP's list of terses is a

"skeleton." Associated with each actor name in TAP's list of actors is

a STEP expression.

A skeleton is a sequence of atoms, but some of the atoms in a

skeleton are "dummy" atoms. When TAP encounters a terse in the input

message, it removes it from the message and replaces it with the skeleton

it finds associated with the name of the terse on its list of terses.

Inside the skeleton TAP replaces the dummy atoms with other atoms from

the input message, according to a set of rules that will be explained below.

For example, suppose that FIND is a terse, and is associated by

TAP with the skeleton

PRINT SUBSET AIRFIELD
IF ANY [RUNWAY (LENGTH) GE X

AND RUNWAY (WIDTH) GE Y]
AND DISTANCE ('Z1; AIRFIELD (LOCATION)) < XX
(NAME, LOCATION, RUNWAY (LENGTH, WIDTH));

where X, Y, Z and XX are dummy atoms. Then when TAP processes the input

message above, the result is the message below:

PRINT SUBSET AIRFIELD
IF ANY [RUNWAY (LENGTH) GE 1800

AND RUNWAY (WIDTH) GE 75]
AND DISTANCE ('BOSTON'; AIRFIEID (LOCATION)) < 50
(NAME, LOCATION, RUNWAY (LENGTH, WIDTH));

After TAP has substituted the skeleton associated with a terse

for an occurrence of the name of the terse and its arguments in an input

message, TAP resumes the processing of the message beginning with the

first atom of the skeleton.

A STEP expression is the basic element of STEP language

(See Section IV). In particular, a STEP expression can be the name

of a procedure. When TAP encounters an actor in the input message,

it evaluates the associated STEP expression. In the case where

the STEP-expression is a procedure name, the procedure is executed.

61

Any procedures associated with an actor through the STEP expression may

do anything at all, including changing the internal workings of TAP.

To summarize, we describe the TAP mechanism in slightly more

detail. When TAP is asked to process an input message, it places it in a

push-down stack called ASPS. An input message is a list of atoms. During

the operation of TAP, ASPS contains a list of such lists of atoms. The

list on the "bottom" is the input message. All other lists are either the

result of a terse expansion (skeletons with the dummy atoms replaced by

arguments) or the result of an action taken by an actor. TAP fetches atoms

one at a time by appealing to the function GETATOM. GETATOM takes the

first atom off the "top" list of atoms and places it in a global location

called CURATOM. It then removes the atom from the list of atoms from

whence it came. When the list becomes empty it is removed from ASPS.

When another list of atoms is placed on ASPS by the expansion of a terse,

or a special action performed by an actor, it is placed at the top of

ASPS. That is, the next atom fetched will be the first atom of the new

list.

The output of TAP is a list of atoms. TAP prepares the output

list of atoms by repetitively calling the function GETAPATOM. GETAPATOM

checks the global location CURATOM to see if it contains the name of a terse

or actor. If it does not, the content of CURATOM is moved to the global

location CUBTAPATOM, an appeal is made to the function GETATOM to refill

CURATOM, and GETAPATOM returns with the value of CURTAPATOM. If CURATOM

is the name of a terse or actor, either a function called SETUPT is

asked to expand the terse, or a function called EVAL is asked to evaluate

the STEP expression associated with the actor. Upon the completion of this

operation, the function GETATOM is asked to refill CURATOM, and the

process is repeated (CURATOM is checked to see if it contains the name

of a terse or actor, etc.).

62

TERSE DEFINITIONS

Terses can be defined by input messages to TAP in the following

format:

DT tn (as ;...;asn), (s), ewl, eewl, dl, nwl, rwl, gsl;

where tn is the terse name, as ;...;as is a list of "argument specifications,1

s is a skeleton, ewl is a list of "end words," eewl a list of "exclusive

end words," dl a list of "delimiters," nwl a list of "noise words," rwl a

list of "repeat words," and gsl a list of "generated symbols."

A terse name may be anything that the Editor recognizes as an

identifier (see ESD-TR-66-653, Volume I, Section V). Only the name of

the terse is required in the terse definition; everything else is optional.

Examples of Simple Terses:

DT BATMAN,, (BRUCE WAYNE, MILLIONAIRE);
DT DISTANCE, (CITYLOC), (GCD(AIRFIELD(LOCATION),
CITY(CITY LOC))) ;

Argument Specifications

After TAP recognizes the name of a terse in an input message,

its next job is to scan off the arguments of the terse. Guidelines for

scanning off the arguments are prepared for"TAP by the definer of the terse.

Some of these guidelines are contained in the "argument specifications."

Each argument specification has the following form:

an, xkwl, ikwl, mar

where an is the argument name, xkwl is a list of "exclusive key words,"

ikwl is a list of "inclusive key words," and mar is a "missing argument

replacement. " Only the argument name is required.

63

Argument Name

The argument name may be anything that the Editor

recognizes as an identifier. The argument name is used as a dummy atom

within the skeleton and replaced by the argument itself when the terse

is expanded.

Example

Terse Definition:'»

DTMUL, (A;B;C), (L(U) ,A; *(U) , B; ST(U) , C;);

Typical Expansion:

MUL 2, X, X + 1;

I

L (U), 2; *(u), X; ST(U) , X + 1;

Exclusive Key Word List

An exclusive key word list is a sequence of identifiers,

each of which is to serve as an exclusive key word for the argument being

specified. The occurrence of an exclusive key word in the input message

being processed by TAP signals that the next atom is the beginning of the

argument with which this exclusive key word is associated. The exclusive

key word itself i_s not part of the argument.

UL(U)," "(U) ," and "ST(U)U happen to be IBM 7030 instructions
meaning load multiply}and store, but TAP is oblivious to this
fact.

64

Example

Terse Definition:

DT MUL, (A, MULTIPLICAND; B, MULTIPLIER; C, PRODUCT),

(L(U), A; *(U), B; ST(U), C;);

Typical Expansions:

MUL MULTIPLICAND 2 MULTIPLIER X PRODUCT X + 1;

1

L(U), 2; *(U), X; ST(U) , X + 1;

MUL PRODUCT X + 1 MULTIPLICAND 2 MULTIPLIER X; ..

i

L(U), 2; *(U), X; ST(U) , X + 1;

MUL MULTIPLIER X, 2, X + 1;

I

L(U), 2; *(U), X; ST(U) , X + 1;

Terse Definition:

DT MUL, (A;B, MULTIPLIER BY; C),

(L(U), A; *(U), B; ST(U) , C;) ;

Typical Expansions:

MUL P MULTIPLIER Q, ZNAME;

i

L(U), P; *(U), Q; ST(U) , ZNAME;

MUL BY X **2, P, R;

;

L(U), P; *(U), X**2; ST(U) , R;

65

Inclusive Key Word List

An inclusive key word list, like an exclusive key

word list, is a sequence of identifiers, each one of which is to serve as an

inclusive key word for the argument being specified. The occurrence of an

inclusive key word in the input message being processed by TAP signals that

this atom is the beginning of the argument with which this inclusive key

word is associated. The inclusive key word itself is part of the argument.

Example

Terse Definition:

DT DOUBLE, (B,,MULTIPLIER BY;C), (MUL TWO, B,C);

Typical Expansions:

DOUBLE X, 2X

i

MUL TWO, X, 2X

DOUBLE 2X BY X, 2X

i

MUL TWO, BY X, 2X

Missing; Argument Replacement

A missing argument replacement is a parenthetically

well-formed string which is used in place of an argument if TAP fails to

find the argument in the input message.

Example

Terse Definition:

DTMUL, (A;B;C,,,TEMP) , (L(U) ,A;*(u) ,B ;ST(U) ,C;) ;

66

Typical Expansions:

MUL I,J,K ;

I

L(U),I; *(U), J; ST(U), K;

MUL I,J;

1

L(U), I; *(U), J; ST(U), TEMP;

Skeleton

A skeleton is the parenthetically well-formed string that is to

be substituted for the terse name and its arguments in the input message.

The skeleton contains dummy atoms which are replaced by the arguments to

the terse, and may contain "generated symbols" (below).

End Word List

An identifier called an end word is used to signal TAP that the

scope of a terse has ended. When TAP has completed the expansion of the

terse, it will resume processing with the atom that follows the end word.

A list of end words may be specified for a terse. If no end word is

specified, ";" is assumed as an end word (";" has been used in all the

examples up to this point). That portion of the input message which begins

with the name of a terse and ends with its end word is known as a "terse

form."

A terse that has no arguments does not need an end word. If it

is desired to have an end word for a terse with no arguments, then the

terse definition should contain an argument specification, but the argument

name should not appear in the skeleton.

67

Example

Terse Definition:

DTMUL., (A;B;C,,,TEMP), (L(U) ,A;*(U) ,B;ST(U) ,C;) ,

STOP / . ;

Typical Expansions:

MUL I, J, K /

I

L(U), I; *(u), J; ST(U), K;

MUL I, J . K

1

L(U) , I; *(U) , J; ST(U) , TEMP; K

Exclusive End Word List

An exclusive end word, like an end word, is used to signal TAP

that the scope of a terse has ended. It differs from an end word in this

way: when TAP has completed the expansion of the terse, it will resume

processing with the exclusive end word itself.

Example

Terse Definition:*

DT MUL, (A;B;C), (L(U) , A; *(U) , B; ST(U),C;) , (;),

NOP;

Typical Expansion:

MUL I, J, K NOP; MUL M, N, P NOP;

i

L(U), I; *(U), J; ST(U), K; NOP; L(U) , M; *(U) , N;

ST(U) , P; NOP;

*The semi-colon in parenthesis specifies ";" as an end word. If ",," follows
the argument specifications, the null string is declared as the end word and
the default case of ";" does not take effect. More about this later.

68

Delimiter List

A delimiter is an identifier that is used to signal the end of

an argument. The delimiter itself is not part of the argument. A list

of delimiters can be specified for a terse. If no delimiters are specified

for a terse " ," is assumed ("," is the only delimiter that has been used

in the examples so far). Of course, end words, exclusive end words, and

repeat words (below) also signal the end of an argument.

Example

Terse Definition:

DT MUL, (A;B;C), (L(U) , A; *(U) , B;ST(U) , C;), (;),,

/ ;

Typical Expansion:

MUL I / J / K;

I

L(U), I; *(U), J; ST(U), K;

Noise Word List

A noise word is an identifier which TAP ignores completely during

the expansion of a terse. Noise words can be used by those people who

insist on making believe that computers understand English. A list of

noise words can be associated with a terse.

Example

Terse Definition:

DT MUL, (A;B;C), (L(U) , A; *(U) , B; ST(U),C;), (;),,(,),

CRASH RATTLE HESS CRUMP;

69

Typical Expansion:

MUL CRASH CRASH RATTLE I, HISS RATTLE

RATTLE CRASH J HISS HISS, CRASH RATTLE

RATTLE CRASH CRASH CRUMP K;

I

L(U), I; *(u) , J; ST(U) , K;

Repeat Word List

A repeat word is an identifier that is used whenever it is desired

to supply more than one set of arguments at one occurrence of the name of

a terse. A repeat word signals TAP that the end of the current set of

arguments has occurred and the next set of arguments begins with the next

atom. A list of repeat words can be associated with a terse.

Example

Terse Definition:

DT MUL (A;B,,,TEMP;C,,,TEMP), (L(U) , A;*(U) , B; ST(U) ,

C;), (;),,(,), AND ALSO;

Typical Expansions:

MUL I, J, K AND M, N, P;
1

L(U), I; *(U) , J; ST(U), K; L(U) , M; *(U) , N; ST(U) , P;

MUL I, J AND L ALSO P, Q, R;

i

L(U), I;*(U), J; ST(U),TEMP; L(U) , L; *(U) , TEMP;

ST(U) , TEMP; L(U) , P; *(U) , Q; ST(U) , R;

Generated Symbol List

A generated symbol is an identifier which is declared in the

generated symbol list and occurs as one or more atoms in the skeleton.

70

When the terse is expanded, the generated symbol is replaced at all its

occurrences by another identifier which is unique to this particular

expansion of the terse.

Example

Terse Definition:

DT DOUBLE.IF.NEGATIVE, (A),

(IF A GE 0 ; GO X ;

A = A * A;

X :),

(>) > > (») >»> X;

Typical Expansion:

DOUBLE.IF.NEGATIVE I;

I

IF I GE 0; GO GS19;

I = 1*1;

GS19:

Stripping and Parenthetically Well-Formed Strings

Sometimes the terse-definer might wish to have a comma, a

semicolon or other key word as a part of an argument. A facility to

allow this is incorporated into TAP.

A parenthetically well-formed string (or pwfs) is a string of

atoms such that in no initial segment the number of right parentheses

exceeds the number of left parentheses, and the total number of left paren-

theses is equal to the total number of right parentheses.

The following strings are parenthetically well-formed:

((())), a(b+c), (), ()(), (()),

The following are not parenthetically well-formed:

), ((()()), a+b)(, (c+(d-e),)(,

71

A parenthesized parenthetically well-formed string (or ppwfs)

is a string that begins with a left parenthesis and ends with a right

parenthesis, and has the property that if the first and last atoms (the

just mentioned left and right parentheses) are removed, then the result is

a parenthetically well-formed string. The following are ppwfsfs:

(0), ((()())()), (a+b), (),

The following are not ppwfs's:

()(), a+b+(c-d), (a*b c)e, ((000)0)0,

"Stripping" is the process of taking a string and, if and only if

it is a ppwfs, removing the left parenthesis at the beginning and the right

parenthesis at the end.

The following table gives some examples of stripping:

string (()) ()() a () a(b) (,)

stripped string () ()() a a(b) ,

Note that in the fourth example the result of stripping is a null string.

All terse arguments are stripped. This is to allow commas, semicolons

and other key words to be arguments of a terse (or parts of arguments).

If the argument of a terse would normally be a ppwfs, it must be

surrounded by another pair of parentheses to nullify the effect of stripping .

It is standard practice when defining a terse that expands into other secondary

terses to parenthesize the arguments of the secondary terse when they are the

arguments of the main terse.

In summary, in regard to parentheses there are two things that must

be remembered when defining terses:

1. Key words that are nested in parentheses are not recognized
by TAP.

2. Arguments that begin with a left parenthesis and end with
a right parenthesis lose their outermost parentheses when
they are inserted into a skeleton.

72

Example

Terse Definition:

DT MUL (A;B;0, (L(U) ,A; *(U) , B; ST(U) , C;);

Typical Expansion:

MUL I, (J;*(U), J), P2;

1

L(U), I;*(U), J; *(U) , J; ST(U) , P2;

A More Precise Explanation of Argument Fetching

When TAP expands a terse, it has the job of supplying a value

to each of the argument names. This is done in the following manner:

First, all those arguments in the terse form which are identified

by key words are assigned to the argument name associated with the key

word.

Second, the remaining arguments in the terse form are assigned

to those argument names which have not yet been assigned values. The

first unidentified argument in the terse form is assigned to the first

declared argument name without a value, and so on.

Third, those argument names which still have no values, are

assigned their declared missing argument replacements as values.

It should be noted that an argument which is the null string is

not the same as no argument. A null argument is generated when one delimiter

is followed by another with nothing in between, or when an exclusive key

word is followed immediately by a delimiter or an exclusive key word for

another argument. If no argument appears then the missing argument replace-

ment is used, but if a null argument appears the value assigned to the

argument name is the null string.

Another subtlety in TAP concerns multiple key words for the

same argument. When a key word for an argument is followed by another

key word for that argument and TAP has not yet finished scanning off the

73

argument, the key word is treated as a noise word if it is an exclusive

key word, or as just another atom of the argument if it is an inclusive

key word. Two entirely separate occurrences of key words for the same

argument will result in undefined operation of TAP.

Creating More Sophisticated Skeletons

Sometimes it is desirable in a terse definition to generate one

skeleton segment if a certain condition is true, and to generate another

skeleton segment otherwise. This is one application of the conditional

sequence actor.

The Conditional Sequence Actor (CS)

The input format expected by the conditional sequence

actor is

CS c, (st), (sf);

where c is either TRUE, or FALSE, or a STEP expression which when

evaluated will have a value of TRUE or FALSE; st is the skeleton to be

generated if c is TRUE; and sf is the skeleton to be generated if c is

FALSE.

The MISSING Actor

The input expected by the missing actor is

MISSING (s)

where s is a string of atoms which may be null. If the string is null,

the MISSING actor and its argument are replaced by FALSE. Otherwise they

are replaced by TRUE. The MISSING actor may be used to detect the presence

of a terse argument.

74

Example

Terse Definition:

DT MUL (A;B, BY;C, INTO),

(CS MISSING (A), (L(U), A;), () ; *(U) , B;

CS MISSING (C), (ST(U), C;), () ;),(;),,(,) ,, AND;

Typical Expansion:
-

MUL I BY J AND BY K AND BY L INTO X ;

I

L(U), I; *(U), J; *(U) , K; *(U) , L; ST(U) ,X;

The TRANS Actor

TRANS is used to enable actor and terse names to

appear in the output string without expanding. The input format for TRANS

is:

TRANS (s)

or

TRANS a

where s is a string and a is an atom. TRANS expands into the string or

atom.

Examp le

TRANS (DT)

expands into

DT

The STEP Actor

The step actor is used to execute a STEP expression

in the input message at the time the STEP actor is recognized. The STEP

75

actor input format is of the form

STEP e

where e is an expression.

PI Is Really A Terse

Surprise1. The thing we've been using all along called DT is

really a terse. Like many terses , it has exclusive key words defined

for it. In particular,

argument specifications,
argument name,
exclusive key word list,
inclusive key word list,
missing argument replacement,
skeleton
end word list,
exclusive and word list,
delimiter list,
noise word list,
repeat word list,

" is the delimiter for DT.

It is now possible to define terses taking advantage of our

knowledge of terses.

NAME is an exclusive key word fo
ARGS 11 ii ti it it

NAME " ii II II it

XKEY II it II it n

IKEY " it t II i it

MAR II it II II f

SKEL " l> It M II II

END M li ii i; it ti

XEND it II it II II

DELIMITER O n II it it

NOISE t II 1 M 1

REPEAT ' II it ti It II

";" is the end word for DT , and »,

Example

DT SKEL (GS MISSING (A), (L(U), A;), () ; *(U) , B;

CS MISSING (C) , (ST(U), C;), () ;)

NAME MUL

REPEAT AND

ARGS (NAME A; NAME B XKEY BY;

XKEY INTO NAME C) ;

76

ACTOR DEFINITIONS

Actors can be defined by input messages to TAP in the following

format:

DACTOR an (e);

where an is the actor name, and e is a STEP expression. When TAP

encounters an occurrence of the name of the actor in an input message

it evaluates the expression.

In general, there are no rules for writing actors.

A Sample Actor: CS

CS (conditional sequence) is the actor which is used to decide

which of two skeletons to output.

CS has three implicit arguments: a condition and two skeletons.

When CSACTOR, the subroutine that is associated with CS through the STEP

expression (CSACTOR), is called, it appeals to GETAPATOM to get the next

tapatom. This might be TRUE or FALSE or a left parenthesis. All other

cases cause an error message to be output. If it is a left parenthesis

the input string is an s-expression, and QL0TSI and EVAL are called to

evaluate it. If the result is neither TRUE nor FALSE then CSACTOR

indicates an error. In any case, CSACTOR now knows the condition and,

therefore, which skeleton to output.

77

GETAPATOM is called and its value is checked to see that it is the

comma that is required after the condition. If the condition were FALSE

then the subroutine STCOMAS (STep to COMma or semi-colon on unmatched right

parenthesis in Atom Source) is called to step over the first skeleton.

GETATOM is called. The current tapatom should still be a comma. GETAPATOM

is then called and the next atom should be a left parenthesis. Everything

after this left parenthesis up to the matching right parenthesis is put into

a stream. It is read from the atom source so that no expansion will take

place yet. This stream is then prefixed to the push down stack ASPS.

CSACTOR then reads to the semicolon at the end of the statement by calling

the subroutine STCOMAS twice and checking to make sure that the current atom

is a semicolon. CSACTOR then returns.

DT Is Really An Actor (Almost)

Surprise again1. When the terse DT is expanded, it generates the

actor DEFINETERSE. Just for the record, the input format for DEFINETERSE is

as fo1lows:

DEFINETERSE t («■«;•••;*•), (s), ewl, eewl, dl, nwl, rwl, gsl;

where t is the terse name, as.;...;as is a list of argument specifications,

s is a skeleton, ewl is a list of end words, eewl a list cf exclusive end

words, dl a list of delimiters, nwl a list of noise words, rwl a list

of repeat words, gsl a list of generated symbols.

An argument specification is of the form

an, xkwl, ikwl, mar

where an is the argument name, xkwl is a list of exclusive key words,

ikwl is a list of inclusive key words, and mar is a missing argument re-

placement. No default cases are supplied for missing arguments to

DEFINETERSE.

78

PRE-PROCESSING VS CO-PROCESSING

TAP can operate as either a "pre-processor" or a "co-processor."

As a pre-processor, TAP processes an entire input message at once. As

a co-processor TAP processes only enough of the input message to generate

one atom of output on each appeal. In co-processing, mode control is passed

back and forth between TAP and its co-processor. The co-processor thinks

of TAP as its input subroutine, and TAP thinks of its co-processor as its

output subroutine.

The difference between pre-processing and co-processing concerns

actors. Actors are of one of two types: those actors which are concerned

with general string manipulation and the internals of TAP, and those which are

peculiar to a particular co-processor. The first kind may be used in

either pre-processing or co-processing mode, and the second only in co-

processing mode.

The definition of all co-processing actors must be preceded by

the word COPROCESSOR.

79

SECTION IV

STEP

INTRODUCTION

STEP language is one of several languages provided by the

C-10 system for building procedures. STEP is a simple language

syntactically. A STEP procedure consists basically of appeals to

C-10 procedures in a prefix functional notation. STEP procedures

may be stored and executed as STEP procedures (using the STEP

interpreter) or translated into AUTOCODER procedures (using the

STEP compiler).

STEP language is based on the LISP system. LISP is

commonly thought of as a list of processing system but, in fact, it

offers much more. Our task in building the STEP language has

been to extract from LISP those things which are useful in a

general system built to manipulate many different types of data

structures, leaving behind those things concerned only with

lists. Readers familiar with LISP will notice the disappearance

of some things. In STEP there is no intrinsic use of CAR, CDR,

and other list functions; no APPLY and no EVALQUOTE.

80

NAMES AND THE ASSOCIATION LIST

A name is a thing that we use to denote something else. "Pencil"

denotes the thing I am writing with; "Elaine" denotes the secretary who will

eventually type this sentence; " "pencil" " denotes the first word of this

sentence. The reader is undoubtedly familiar with the use of names.

An interesting thing about names is that although the rules for

building them out of our alphabet allows for great variety, we tend to

use the same names over and over. But despite our over-use of names, we

are seldom confused. To illustrate, imagine a girl named Sally who has

a husband named Harry, a father named Ted, and a cousin named Elaine.

In the "context," or environment of her home, discussing laundry

detergents with her mother, a casual reference to Harry will be auto-

matically associated with her husband, and a casual reference to Ted

will be automatically associated with her father. If Sally goes alone

to a PTA meeting that evening and meets a man named Harry and another

man named Ted, reference to Harry and Ted will be automatically associated

with the new acquaintance throughout the evening. If she has not

met someone named Elaine, references to Elaine will still be associated

with her cousin. But when Sally returns home and the context of the

PTA meeting is left behind, Harry and Ted are once again husband and

father. It is almost as though Sally has a list of names and an

associated list of denotations in her head. Prior to the PTA meeting,

a section of this list looks like this:

81

ELAINE ■ cousin
HARRY - husband
TED = father

At the PTA meeting, the list looks like this:

ELAINE = cousin
HARRY = husband
TED = father

HARRY = man who sat on my left
TED = man who offered me a ride home

When Sally returns home the new denotations associated with

Harry and Ted are erased and the old ones restored:

ELAINE = cousin
HARRY = husband
TED = father

As a description of the mechanism that people use to keep

names straight, this discussion falls a little short. But as a

description of the mechanism that STEP uses to remember names, it

happens to be fairly accurate.

During the operation of one or more STEP procedures,

the denotations of all names are remembered with an association

list. The association list is sometimes referred to as the "associa-

tion stack," or the A-stack. The denotation of a name is frequently

referred to as the "value" of the name.

82

When the mechanism which interprets STEP procedures is

initialized, the following names are entered in the A-stack:

Name Value

NIL nil
TRUE true
T true
FALSE false
F false

Throughout the execution of a procedure the STEP interpreter

typically enters and exits several different "contexts." A new

context is encountered each time an appeal is made to a procedure

from within a procedure, each time a "PROG form" is encountered, and

each time an "autonomous procedure name" is encountered (these forms

are explained below). When a new context is entered, a line is

drawn across the A-stack and the names associated with the new

context are entered in the A-stack. The value associated with a

name is always located by searching the A-stack from the new end.

Thus a name which is entered in the A-stack more than once is

always associated with its newest value. A context is exited when-

ever a procedure returns to the procedure which appealed to it,

or whenever the end of a PROG form or autonomous procedure name is

reached. When a context is exited, all the entries in the A-stack

made for that context are erased (all the entries back to the line

that was drawn across the A-stack when the context was entered).

The A-stack is used throughout STEP to associate names with

values. The reader should keep this mechanism in mind as he reads

the following material.

83

EXPRESSIONS

An expression is the basic structure of STEP language. When

executed by the STEP interpreter, an expression produces a value. The

execution of an expression may also have some "side effects." An ex-

pression, by definition, is one of the following things:

number
literal
name
ATOM form
QUOTE form
procedure form
IF form
COND form
PROG form
GO form
RETURN form
ASSIGN form
DEFINE form

Numbers and Literals

A number is anything that the Editor accepts as either an

integer or a floating point number. For all practical purposes an

integer is a string of digits not exceeding nine characters in length;

and a floating point number is a string of digits with a decimal point

either prefixed, suffixed, or imbedded, or one of these possibilities

followed by E and an integer exponent (which may be signed with + or -)

The value of a number is obvious.

A literal is anything that the Editor accepts as a literal,

essentially a character string surrounded by quotes.

Examples

'AB/C'
.32
8
7.956E-4

84

Names

A name is anything that the Editor accepts as an identifier.

Roughly speaking, a name is a string of letters and digits not ex-

ceeding 27 characters in length, which may contain embedded periods

if at least one letter precedes the first period. A name may contain

spaces and other punctuation only if it is surrounded with backslashes,

The value of a name is the value associated with the name in

the association list (or A-stack) when the name is encountered by

the STEP interpreter. If the name is entered more than once in the

A-stack the "newest" associated value is used. If the name is not

entered in the A-stack, the value of the name is undefined (a crock

with type code U).

Recall that the names "NIL", "TRUE", "T", "FALSE", "F" are

initially entered in the A-stack.

Examples

X
Y.2
NEWYORK

\NEW YORK\
LABEL
NIL
T

ATOM Form

An ATOM form is written

(ATOM a)

or

ATOM a

85

where a is an atom. An atom is one quantum of output from the Editor.

That is, an atom is either a number or a name. The ATOM form is one

way in STEP language of allowing names to denote themselves. The value

of an ATOM form is the atom within it. If the atom is a name, it is

not looked up in the A-stack.

Examples

ATOM form

(ATOM A)
ATOM\NEW YORK\
(ATOM 18.4)
ATOM LABEL.X

Value

A
NEW YORK
18.4
LABEL.X

QUOTE Form

A QUOTE form is written

(QUOTE a)

or

QUOTE a

where a is an atom (a number or a name) or a parenthetically well-

formed string. The QUOTE form is another way in STEP language of

allowing names to denote themselves. The value of a QUOTE form

is a stream pointer to the atom or parenthetically well-formed string

within it (and not the thing itself).

Examples

QUOTE Form Value

QUOTE 6 stream pointer to 6

(QUOTE \NEW YORK\) stream pointer to NEW YORK

QUOTE 18.E-7 stream pointer to 18.E-7

(QUOTE (X(Y))) stream pointer to (X(Y))

86

Procedure Form

A procedure form is written

(pn al ... an)

where pn is the name of a C-10 procedure and al

arguments supplied to the procedure.

an are the n

A procedure appealed to from a procedure form can be another

STEP procedure, an AUTOCODER procedure, or a PROFILE procedure.

A procedure can have from zero to ten arguments. The number

of arguments a procedure has is fixed (the same for every appeal).

Each argument to a procedure is an expression. Thus each argument to

a procedure may be itself an appeal to a procedure.

The value of a procedure form is the value returned by the

procedure when the procedure is executed.

A procedure name within a procedure form is the only kind of

name in STEP language which is not associated with a value in the

A-stack. The STEP interpreter recognizes a procedure name by the

context in which it occurs, and locates the associated procedure

through C-10 mechanisms external to the STEP interpreter.

Examples

(ADD 2 2)
(ADD (ADD 2 2) 2)
(PR0G2 (QUOTE XYZ) 26.4E-7)
(ADD 7 (SUB 18 3))

87

Form Forms

In the expression

(ADD 7 (SUB 18 3))

the second argument to the procedure ADD is an appeal to the procedure

SUB. This particular expression is evaluated by the STEP interpreter

by appealing to the procedure SUB first, which returns a value of 15;

then appealing to the procedure ADD with the arguments 7 and 15.

Conceivably, this expression could be evaluated by appealing to ADD

first, and appealing to SUB second (when ADD discovers that its second

argument is not simple). In the case of this example, the evaluation

might proceed either way. But there are some cases where it is

desirable not to have the arguments of the procedure evaluated before

the appeal to the procedure. For example, it is desirable to call some

frequently used procedures with names as arguments without the necessity

of prefixing each name with "ATOM" or "QUOTE" (unless this is done the

associated value of the name is supplied to the procedure). It is

possible to define procedures in STEP language which will not have their

arguments automatically evaluated before they are called. Such a pro-

cedure is called a form. A procedure which is not a form is called a

function.

A STEP language procedure which is to operate as a form must

be declared as a form when it is defined (this is explained below). A

form always has either no arguments or exactly one argument. When a

form is appealed to from another STEP procedure, this argument is a

stream pointer to the STEP internal representation of whatever follows

the name of the form and precedes the right parenthesis matching the

left parenthesis preceding the name of the form. That is, if XFORM is

88

the name of a form, when XFORM is appealed to from the expression

(XFORM (ADD 6(SUB 3 D) XYZ NIL)

the one argument supplied to XFORM is a stream pointer to the

internal representation of

(ADD 6 (SUB 3 1)) XYZ NIL

Wnat,the reader may ask, does one do with such a

stream pointer?

The reader may follow the following rules which are

guidelines to the accessing and evaluation of form arguments.

The single argument to a form is segmented into

pieces by the STEP interpreter. Each piece is either a name, a number,

or something surrounded by parentheses. The single argument

(ADD 6 (SUB 3 D) XYZ NIL

is segmented into the individual pieces

(ADD 6 (SUB 3 D)

XYZ

NIL

The argument to the form is a stream pointer to the

first segment. An appeal to the procedure NXTGRP with the pointer to

the first segment will produce a pointer to the second segment.

Another appeal to the procedure NXTGRP with the pointer to the second

segment will produce a pointer to the third argument, and so on.

89

If A is the argument to a form, A is a pointer to the first argument

segment,

(NXTGRP A)

is a pointer to the second segment, and

(NXTGRP (NXTGRP A))

is a pointer to the third argument segment. NXTGRP returns a value

of nil when there is no next segment.

If any or all of the segments of the argument to a

form are STEP expressions, the value of the expressions may be ob-

tained by appealing to the procedure EVAL with a pointer to an argument

segment as argument.

It should be noted that declaring a procedure a form

is one way of getting around the restriction that a procedure must have

a fixed number of arguments. If the argument segments of the single

argument to a form are thought of as individual arguments, then in this

sense a form can have a variable number of arguments. If PLUS is a form,

one may write

(PLUS 3 (SUB 7 6) 8 16 42 14)

and expect PLUS to add all of its "arguments" together at once. Actually,

PLUS is supplied with only one argument. PLUS obtains the values of its

"arguments" by appealing to NXTGRP and EVAL. If A is the argument to

PLUS in the above example,

(EVAL A) = 3
(EVAL (NXTGRP A)) = 1
(EVAL (NXTGRP (NXTGRP A))) =8, etc.

90

Autonomous Procedure Names

Autonomous procedure names are names of procedures

which contain within them the definition of the procedure they name.

Autonomous procedure names are rare in programming languages, but

have been used by mathematicians and engineers for a long time. When

an engineer says "the function sine" he uses the name "sine" to denote

the common trigonometric function, the definition of which everyone knows.

But when an engineer says "the function X2 + 1" he uses the name

"X2 + 1" not only to denote the function, but also to define it. "X2 + 1"

denotes the function with value equal to the square of the argument to

the function plus one. One difficulty in using autonomous procedure

names is that it is not always clear what the arguments to the procedure

are supposed to be. If "aX + b" is an autonomous procedure name, are

"a", "X", and "b" all names of arguments? Is only "X" the name of an

argument? In normal conversational usage, it is usually obvious which

of the symbols within an autonomous procedure name represent arguments,

but when autonomous procedure names are used within STEP language, the

list of argument names must be spelled out explicitly.

An autonomous procedure name in STEP language is

written:

(FUNCTION (^...n^) e)

or

(FORM (n) e)

depending on whether the procedure is to be a function or a form.

n-...n, is a list of k names which are used as names of arguments to

a function (if any); n is a name which is used as the name of the

argument to a form (if it has one); and e is an expression which

defines the value of the procedure.

91

An autonomous procedure name can be used wherever a

regular procedure name can be used. In particular it can be used in a

procedure form. Note that the autonomous procedure name itself does

not represent a value and is not one of the things previously listed

as a possible expression.

Examples of Autonomous Procedure Names

(FUNCTION (X) (PLUS (TIMES XX) 1))

(FUNCTION (A B) (TIMES (EXP A B) A))

(FUNCTION () TRUE)

Examples of Autonomous Procedure Names Used in
Procedure Forms

((FUNCTION (X) (PLUS(TIMES X X) 1)) (SQRT 47))

((FUNCTION (A B) (TIMES (EXP A B) A)) (SIN (TAN 45)))

((FUNCTION () TRUE))

((FUNCTION (X) (PLUS (TIMES X X) 1)) ((FUNCTION (X) (PLUS
(TIMES XX) 1)) (SQRT 47)))

It is easy to imagine how a procedure form which con-

tains an autonomous procedure name as the procedure name is evaluated by

the STEP interpreter. The evaluation of such a procedure form constitutes

a new "context" as discussed in the Names and the Association List. First

the arguments to the procedure are evaluated. Then a line is drawn across

the A-stack and the names following "FUNCTION" or "FORM" in parentheses are

entered in the A-stack and associated with the values of the arguments.

Then the expression within the autonomous procedure name is evaluated.

The value of the expression within the autonomous procedure name becomes

the value of the procedure form. Finally the A-stack is restored to its

former status.

Another Example

((FUNCTION (X) ((FUNCTION (X) (TIMES X X)) (TIMES XX))) 2)

when evaluated yields a value of 16.

92

IF Form

An IF form is written

(IF el e2)

where e- and e~ are expressions. An IF form is evaluated by evaluating

the first expression, and then if and only if the value of the first

expression is true, evaluating the second expression. The value of the

IF form is the value of the second expression if the value of the first

is true; the value of the IF form is nil if the value of the first ex-

pression is not true. This may sound a little silly. This is because

the IF form is usually used not to generate a value, but to execute

(evaluate) the second expression conditionally, and thereby cause the

"side effects" of evaluating the second expression to occur.

Examples

(IF (EQUAL A 6) (PR0G5))

If the value associated with the name "A" in the A-stack is

6, the procedure PR0G5 is executed. The actual value of the IF form

is whatever value the procedure PR0G5 returns if A equals 6; the value

of the IF form is nil otherwise.

(IF FALSE TRUE)

The value of this IF form is nil.

(IF (IF TRUE TRUE) FALSE)

The value of this IF form is false.

(IF 6 8)

The value of this IF form is nil.

93

COND Form

A COND form is written

(COND(eue12)(eue22)...(enlen2))

where e#1 e.9, 1 ^ i ^ n, is a pair of expressions. The COND form is

evaluated as follows: The first expression in the first pair of

expressions is evaluated. If its value is true, the second expression

in the first pair of expressions is evaluated and its value becomes the

value of the COND form. If the value of the first expression is not

true, the process is repeated with the second pair of expressions, and

so on. If none of the values of the first expressions are true, the

value of the COND form is nil.

Examples

(COND ((EQUAL A 1) 3) ((EQUAL A 2) 6)
((EQUAL A 3) 9))

This COND form has a value of three times A if A is 1,2, or

3; nil otherwise.

(COND (FALSE TRUE))

This COND form has a value of nil.

94

PROG Form

Thus far, STEP language does not look much like a programming

language. The only things described so far have been a mechanism for

associating values with names, a mechanism for appealing to procedures,

and a mechanism for conditionally evaluating expressions. But, in

fact, together with a mechanism for defining new procedures these things

would comprise a completely adequate programming language. For example,

the reasonably complicated procedure QUOTIENT could be defined by this

autonomous procedure name:

(FUNCTION (A B) (COND ((GREATER A B) 0)
((EQUAL AB) 1)
((GREATER B A)
(ADD 1 (QUOTIENT (SUB B A) A)))))

However, despite the adequacy of the STEP language described

thus far, the PROG form is defined to make STEP language more like

conventional programming languages, thus making STEP more palatable

to conventional programmers and possibly effecting some efficiencies.

The PROG form introduces STEP analogs of several common programming

concepts which have not yet been mentioned: the concept of a "label,"

the concept of a "branch instruction," and the concept of "temporary

storage."

A PROG form is written

(PROG (nr..n) e1-..ek)

where n ...n is a list of names and e ...e is a list of expressions.
1 j lk

95

The names n-...n. serve as "temporary storage" in the following

way. The scope of a PROG form is a new "context" to the STEP inter-

preter, in the manner discussed in the Names and the Association

List. When the PROG form is interpreted a line is drawn across the

A-stack and each of the names in the list of names following "PROG" is

entered in the A-stack associated with the value nil. During the

execution (evaluation) of the remainder of the PROG form, the values

of these names may be referenced and changed, just as temporary storage

is changed in a conventional program. When the evaluation of the PROG

form is complete, the A-stack is restored to its former status (the

names are no longer defined, or resume their previous identity). These

names are often referred to as "PROG variables."

Some of the expressions in the expression list e ...e, serve as

"labels." The next thing that the STEP interpreter does after entering

the PROG variables in the A-stack is to examine each of the expressions

in the list e.. . . .e. . Each expression which does not begin with a left

parenthesis and end with a right one is entered in the A-stack and

associated with a value which is a pointer to its location in the

PROG form. Of course, there are only two kinds of expressions which

do not begin with a left parenthesis and end with a right one: a

name and a number. It is not recommended that numbers be used as

labels; i.e., they should not stand alone in the expression list

e-...e,. STEP will not complain of this although some undefined

results may occur. The A-stack is restored to its previous status

following the evaluation of the PROG form.

After the PROG variables and labels of a PROG form have been

entered in the A-stack, the execution (evaluation) of the PROG form

continues. The STEP interpreter then evaluates the expressions

e,...e, , one at a time, proceeding from left to right, throwing away

the values of the expressions as they are obtained. The value of a

96

PROG form is nil, unless a RETURN form is executed (below). The

sequential interpretation of the expressions e-...e, may be interrupted

by the execution of a GO form (below).

Examples of PROG forms will be given following the explanations

of the GO form, the RETURN form and the ASSIGN form.

GO Form

A GO form is written

(GO n)

where n is a name. When a GO form is evaluated, the associated value

for the name is found in the A-stack. This associated value should be

a pointer to a place within a PROG form. If indeed it is, interpretation

is interrupted, and begun again with the label pointed to. If the value

associated with the name is not a pointer, an error message is printed

and the value of the GO form is undefined.

97

RETURN Form

A RETURN form is written

(RETURN e)

where e is an expression. When a RETURN form is executed within a

PROG form, interpretation of the PROG form ceases, and the value of

the PROG form is the value of the expression within the RETURN form.

When a RETURN form occurs outside a PROG form, interpretation of the

STEP expression being interpreted ceases, and its value is the value

of the expression within the RETURN form.

ASSIGN Form

An ASSIGN form is written

(ASSIGN n e)

where n is a name and e is an expression. An ASSIGN form is used to

change the associated value of a name in the A-stack. Only the most

current entry of the name in the A-stack is changed. The associated

value of the name in the A-stack becomes the value of the expression e.

The value of the ASSIGN form is also the value of the expression e.

Examples

(PROG () (RETURN TRUE))

The value of this PROG form is true.

((FUNCTION (A B)
(PROG (QUOTIENT)

(ASSIGN QUOTIENT 0)
LABEL (IF (GREATER B A) (RETURN QUOTIENT))
(ASSIGN A (SUB A B))
(ASSIGN QUOTIENT (ADD QUOTIENT 1))
(GO LABEL)))
847
63)

The value of this expression is 847 divided by 63.

98

(EQUAL NIL (PROG(X)
(ASSIGN X D)
(ASSIGN D C)
(ASSIGN C X)))

The value of the expression is true. In the course of its

evaluation the values of C and D are interchanged in the A-stack.

(PROG () TRUE (IF TRUE (RETURN FALSE)))

The value of this expression is nil.

(ASSIGN A(ASSIGN B(ADD 6 6)))

This expression has a value of 12. It also assigns the

value 12 to the names A and B.

(PROG () (IF (EQUAL 3 4) (RETURN TRUE)))

This expression has a value of nil.

DEFINE Form

W« have seen in earlier discussion how an autonomous procedure

name serves as a name of a procedure and also specifies the algorithm

for determining the value of the procedure. As the name of a pro-

cedure that is to be used again and again, an autonomous procedure

name is a little awkward. The DEFINE form is used to specify a

unique name that is to be used in place of a particular autonomous

procedure name. Upon the execution of a DEFINE form, a new name

is added to STEP's list of procedures, and is associated with the

designated autonomous procedure name. Henceforth, that name can be

used to invoke the procedure thus defined.

99

A DEFINE form is written

(DEFINE (nx apr^) (n2 apn^ . .. (r^ apr^))

where ri- apn1 , 1 £ i £ k, is a name and the autonomous procedure

name that is to be associated with it.

Examples

(DEFINE (DOUBLE (FUNCTION (X) (ADD XX)))
(TRIPLE (FUNCTION (X) (ADD(DOUBLE X) X))))

(DEFINE (QUOTIENT (FUNCTION (A B)
(PROG (QUOTIENT)

(ASSIGN QUOTIENT 0)
LABEL (IF (GREATER B A) (RETURN QUOTIENT))

(ASSIGN A (SUB AB))
(ASSIGN QUOTIENT (ADD QUOTIENT 1))
(GO LABEL))))

(DEFINE (PLUS (FORM (A)
(COND ((EQUAL A NIL) 0) (TRUE

(ADD (EVAL A) (PLUS (NXTGRP A))))))))

A FEW PROCEDURES

The answer to the question "What procedures can be appealed

to from a new STEP procedure?" is "any procedure in the C-10 system:

any STEP procedure, any AUTOCODER procedure, any PROFILE procedure."

There are over 400 such procedures, far too many to describe here.

However, for the benefit of the reader who wishes to become familiar

with STEP by writing some sample procedures for exercise, a few pro-

cedures are listed below to get him off the ground.

100

Name No. of Args.

ADD 2

ADD1 1

AND (form)

DIV 2

EQUAL 2

GREATER 2

MUL 2

NOT 1

NULL 1

OR (form)

PRINTC 1

TRACE (form)

UNTRACE (form)

Action/Value

Returns sum of arguments, which must
have numeric values.

Returns sum of argument, which must
have numeric value, and one.

Returns logical AND of arguments (true

or false) which must have values of
true or false.

Returns quotient of arguments, which
must have numeric values.

Returns equal comparison of arguments
(true or false), which must have
numeric or literal values.

Returns greater comparison of argu-
ments (true or false), which must
have numeric values.

Returns product of arguments, which must
be numbers.

Returns negative of argument, which must
be true or false.

Returns true if argument is nil; returns
false otherwise.

Returns logical OR of arguments (true
or false) which must have values of
true or false.

Prints argument on console typewriter;
returns nil.

Turns on tracing for all procedures named
in argument list.

Turns off tracing for all procedures named
in argument list.

101

COMPILING STEP PROCEDURES

STEP procedures which have been defined using the DEFINE form

can be compiled into AUTOCODER procedures using the STEP compiler.

Unfortunately, it is possible to write procedures in STEP language which

behave differently when they are compiled into AUTOCODER. To make sure

that a STEP language procedure can be compiled successfully into AUTOCODER

these rules of thumb should be followed:

(1) Don't change the denotations of labels.
Programs like the following will not work
when compiled.

(FUNCTION (A) (PROG (X) (ASSIGN X A) (GO X)))

(2) Don't tamper with the "constants" TRUE, T, FALSE,
F, NIL.

(3) Don't appeal to procedures in STEP or PROFILE
unless you intend to compile them also.

THE USES OF STEP LANGUAGE IN C-10

STEP language is used in the following ways:

(1) STEP procedures are used as basic building
blocks of C-10.

(2) STEP expressions can be entered directly
from the console and evaluated on-line.

(3) STEP expressions may be embedded in PROFILE
procedures and queries.

(4) STEP expressions are used to define actors to
TAP, the terse/actor processor.

102

TRACING

A special tracing facility is provided for tracing STEP

procedures which are being interpreted.

Briefly, there are two procedures which are used to turn

tracing on and off: TRACE and UNTRACE. Each of these procedures is

a form and accepts a variable number of arguments, which except for

the first one are names of procedures. The first argument specifies

which trace program is to be used. The STEP trace is probably the most

useful for debugging STEP programs.

Example

(TRACE STEP EXP MUL ADD)

A sample trace, showing the evaluation of the expression

X2 + 2X + 1

appears below for X = 4:

103

TRACING (EXP X 2)
ENTER EXP

WITH 2 ARGUMENTS..
4
2

LEAVE EXP
WITH VALUE..
16

TRACING (MUL 2 X)
ENTER MUL

WITH 2 ARGUMENTS..
2
4

LEAVE MUL
WITH VALUE..
8

TRACING (ADD(EXP X 2)(MUL 2 X))
ENTER ADD

WITH 2 ARGUMENTS..
16
8

LEAVE ADD
WITH VALUE..
24

TRACING (ADD(ADD(EXP X 2)(MUL 2 X)) 1)
ENTER ADD

WITH 2 ARGUMENTS..
24
1

LEAVE ADD
WITH VALUE..
25

104

SECTION V

MODULAR MACHINE LANGUAGE PROCEDURES

RELOCATABLE SUBROUTINES

Relocatable subroutines in C-10 are both recursive and

dynamically relocatable. To accomplish this, it was necessary to place

some restrictions on their form and use, and to establish a common set

of rules for writing them.

The need for a standard interface for linkage between routines

in a variable word length machine has resulted in the invention of fixed

length fields called crocks, an arbitrary ten characters long, with a

word-mark over the leftmost character.

Three regions containing crocks are defined specifically to

implement the subroutine linkage:

QTEMP* This symbol defines the left end of a set of

30 crocks, the temporary storage list. They

can be addressed by the names QT1 through QT30

each of which defines the right end of its

respective crock. Thus, QT1 is QTEMP+9, QT2

is QTEMP+19, etc. The names QT1 through QT30

should not be used within the body of subroutines

but only within EQU statements at the beginning.

(This makes subroutines easier to change, in

addition to making the symbols more mnemonic).

*Since the assembly system, Autocoder, has no heading or tailing
facilities, system symbols and routine names are conventionally
defined with a prefix Q. To avoid duplication with Q-symbols, the
individual user simply uses symbols which begin with a letter other
than Q.

105

QARGL This symbol defines Che left end uf a set of 10

crocks, the argument list. The names QARG1

through QARCLU define the individual crocks as

described above for QTEMP.

QVALUC This symbol defines the right hand end of a single

crock used for subroutine values.

CALLS AND RETURNS

When one subroutine wishes to call another, it places the

arguments (appropriate in number and form) for the program to be

called (callee) in the argument list, QARGL, and executes a call to the

callee.

Subroutine Control (RESC) first guarantees that the callee is

in memory, making apace for it and reading it in if necessary. Callee

has declared, in the first 48 characters of his code, the number of

arguments he expects and the number of temporary registers he will

require. RESC adds these two figures together to determine the

amount of QTEMP that will have to be saved, and saves this number in

its own, private pushdown stack. The arguments are transferred from

QARGL to the corresponding slots'"' in QTEMP, and each of the additional

requested QTEMPS, immediately following the arguments, is set to a

type code of N.

Thus, a subroutine, on receiving control, will find its n

arguments in the first n slots of QTEMP, (not QARGL). QARGL is

immediately available for use in setting up the arguments for another

call, without destroying the arguments for this one.

afield containing a crock.

106

Since the temporary slots requested are assigned to the slots

following the arguments, and there are a total of 30 QTEMP slots, it

follows that the number of temporary slots in which crocks may be kept

is limited to 30 minus the number of arguments.

When the routine has completed its task, it sets up a single

crock, QVALUE, with its result, which will be returned to the caller.

A limit of a single value for a subroutine has on occasion proved dis-

tasteful. Additional crocks have been proposed to augment QVALUE. At

this writing, three such crocks have been defined. QSTRVAL is used

privately by block management, at times, to pass back additional infor-

mation which it feels may be useful to its users. QVALUE2 and QVALUE3

have been used by other procedures for a similar purpose.

DYNAMIC SUBROUTINE RELOCATION

Subroutine Loading

We have mentioned earlier that RESC, if it needs to,

will make space for, and load a program if it is not already in

memory.

Unlike many systems, in C-10 there is no attempt to force the

user to forecast his usage of other subroutines by declaring and loading

them in advance, as is the case with FORTRAN. Instead, as each sub-

routine is called for the first time, it is read from disk into the

next available space in memory. When the available space is not

sufficient to accommodate a subroutine to be loaded, subroutines that

have not been used for a long time (i.e., are "oldest") are discarded

until enough space is available, the remaining subroutines are

consolidated in the program area, and the new subroutine is loaded

at the end.

107

Self Modification

The ability to dynamically move a subroutine after it has

been loaded into core is made possible partly by the relocation

method used and partly by some rules the user must follow.

Subroutines are assembled as though they were to operate at

location 0. When RESC places a subroutine into a specific core loca

tion, it also places that location into XI (index 1). It is the

responsibility of the user to modify every internal address symbol

in his program by XI. For example:

6 16 21

TEMP EQU QT1

B L0C+X1

LOC MLC DATA +X1, TEMP

CALL QROUTINE,,'74 2'+X1

where Q-symbols are absolute and need no modification. Note that

every time a branch to LOC is desired, it must be written L0C+X1.

This can be avoided by defining the symbols themselves to include

the XI reference:

TEMP EQU QT1

B LOC

LOC EQU *+Xl

MLC NAME, TEMP

B LOC

DCW 'NAME4'

NAME EQU *-l+Xl

108

Note the difference in defining symbols for data and for instructions:

instructions - definition is *+Xl preceding the instructions

data - definition is *-l+Xl following the data

Index register usage, other than that of XI, is discussed

in a later section.

When a subroutine gives up control to call another, it may

be discarded and read back in, or it may merely be moved before it

again regains control. Temporary storage within the subroutine may or

may not be changed on return from the call. Thus, all information

which the subroutine wishes preserved across the call must be kept in

QTEMP registers reserved for that purpose. Since the QTEMP contents

are placed in the pushdown list at the time of a call, and restored on

the return, they appear unchanged to the user. Briefly, the two

rules discussed above may be summarized as follows:

1. All internal symbols within the subroutine must be
modified by XI.

2. Subroutines may not be self-modifying across a call,
but should use QTEMP instead.

Recursiveness

The rules and mechanisms required to allow dynamic subroutine

relocation provide the capability for any subroutine to call itself

recursively. It need make no special provisions to permit the re-

entry.

MACROS

Five macros have been provided to be used where applicable in

every subroutine.

109

BEGIN

Every subroutine must begin with the BEGIN macro. The

expansion of the macro supplies the current definitions of all system

symbols, plus the header material which precedes each subroutine.

16 21

BEGIN rname,args,temps,type

rname - is the name of the subroutine being compiled. It

may be a two to ten character alphanumeric name

which begins with the character Q.

args - is a three digit number* which specifies the number

of arguments (000 to 010) expected by this routine.

temps - is a three digit number* which specifies the number

of words of temporary storage (QTEMP) required by this

routine in addition to those used for arguments.

type - normally omitted, this field allows the user to

specify two special kinds of subroutines, forms (F)

and absolute (A).

A form is special in that it has only one explicit

argument. This argument is a pointer to the first

member of a list of arguments, whose number is indefinite,

the stream function NXTGRP is used to get the next

argument of a form. When NXTGRP returns NIL, there

are no more arguments.

Absolute routines are rare in C-10. Examples

include IOCS and RESC itself.

^Leading zeros required.

110

CALL

All subroutine calls must be made with the CALL macro.

16 21
CALL rname,value,argl,arg2,...,argn

rname -

value -

ar&lj.
arS2»---
argn

is the name of the subroutine being called. It is

the only required parameter of the CALL macro.

is a location into which QVALUE is to be saved upon

return to the caller.

represent the arguments required by the routine being

called. Those specified will be moved by the instruction.

MLC argn,QARGn

The user may, of course, set up his own arguments,

i.e. ,

MLCS QI,QARG1

ZA Q1,QARG1-1

Arguments so set up should be omitted from the CALL

statement.

RETRN

The RETRN macro may be used whenever control is to be returned

to the calling subroutine.

16 21
RETRN value

111

If value is specified, the instruction

MLC value, QVALUE

is compiled before the return.

RETRN may appear more than once in any subroutine, but

should appear at least once.

FIN

The FIN macro has no parameters. It must appear once and

only once in every subroutine, positioned as the next to last card

of the deck, just before the END card.

16
FIN

TEARS

The TEARS macro is used whenever an error message is to be

output by a subroutine.

16 21
TEARS enum,parl,...,par7

The TEARS macro has from one to eight parameters. The first

parameter is an error message number and is written n! (an integer

followed by an exclamation point). The remaining parameters are

either other error message numbers (which are also written n!) or

printable crocks. The parameters which follow an error message

number are inserted into the error message, if the error messages

require parameters; otherwise, they are added to the end of the

error message.

112

Each message specifies whether the "current line of input"

is to be printed along with the message or not, or if the decision to

print the "current line of input" is to be based on the setting of the

global switch QTOGGLE. QTOGGLE is set to 1 if the "current line of

input" is to be printed, 0 otherwise.

New messages may be added and old messages may be changed with

the help of the subroutine CHANGTEAR.

INDEX REGISTERS

Description

VI.
Containing the origin of the currently

operating program, it may not be altered

by anyone other than RESC.

X^: Reserved for RESC use, it always points to the

most recently used position of the pushdown

list (QPUSHL) internal to RESC. Only RESC may

alter it.

X3-X13: These index registers may be used by the

individual subroutines; each one used must be

saved before use and restored to its original

value before the program returns.

X14,X15 These index registers may be used freely by

the individual subroutines. They need not be

saved or restored; however, their values are not

guaranteed across a call. Thus, in the example,

113

TEMP EQU QT5
Ik '13'+X1,X10
CALL ROUTINE
MLC NAME+X10 ,TEMP

the MLC uses the value of X10 established

before the call. If this same sequence had

used X14 in place of X10, X14 might have

changed during the call.

PR-155 NQFLG Option

The PR-155 Autocoder assembly program considers X14 and X15

to be reserved for monitor use, and will compile M (multiply defined

symbol) flags whenever X14 or X15 appear in a program. Since C-10

does not use the PR-155 monitor, and since the compilation is correct

despite the flags, they may be ignored. A method exists, however,

to suppress these flags by expanding the EXEQ card to add the

parameter NOFLG:

6 16 21
MON$$ EXEQ AUTOCODER,,,NOFLG

This will suppress only the M-flags caused by the use of X14 or X15;

M'flags for truly multiply defined symbols are not suppressed.

Symbolic Use

It is recommended that the use of index registers 3 to 15

be symbolic, rather than absolute. Autocoder accepts statements

such as

XA EQU X15

as long as the EQU appears before any use of that symbol as an index

register.

114

In particular, it has become a fairly common convention

to define X15 as XA, and X14 as XB.

CLOSED SUBROUTINES

In a dynamically relocatable environment, the use of closed

subroutines within a subroutine can be somewhat tricky.

The major danger arises when the entire subroutine is moved

between a call to and the return from the closed subroutine. Further, the

conventional store B-register into the exit instruction does not work at

all in the C-10 environment, since the store B-register instruction must

not be indexed*, and, on the other hand, references to C-10 instructions

must be indexed by XI.

Two techniques are available, one using an index register,

the other a QTEMP. The index register method tends to be more useful

if parameters or error returns follow the branch to the closed

subroutine.

For both methods, it is necessary that the sign of the

location into which the B-register is stored be guaranteed positive,

since the store B-register stores only into the numeric positions of

the addressed field, leaving the zones untouched.

QTEMP Method

BREG

CLSUB

EQU QT1-5

EQU *+Xl

SBR BREG

I
XI,BREG

Note: BREG requires a high-
order word-mark.

Set up BREG

Compute relative return

AUTOCODER will compile, without flags, such an instruction:
SBR X +5+X1

on execution, however, the hardware will ignore the indexing bits.

115

CALL

MLN BREG,EXIT+5

EXIT EQU *+Xl

B EXIT

Store relative return

The address compiled
will use XI.

If no CALL occurs within the closed subroutine, it can be written:

BREG EQU QT1-5

i
CLSUB EQU *+Xl

SBR BREG

|
KLC BREG ,EXIT+5

EXIT EQU *+Xl

B EXIT

Again, BREG requires a
high-order word-mark.

Index Register Method

Assume that the closed subroutine has an error return

following the branch, and a normal return seven characters further

down:

The call:

B CLSUB

B ERROR

Normal Return

The subroutine:

CLSUB EQU *+Xl

SBR INDEX

S XI,INDEX

Error return

Make index relative

116

I
CALL

I
A XI,INDEX

O+Xl

7+X1

Make index absolute

Error return

Normal return

As a general rule, INDEX must be relative whenever a CALL

occurs, and may be absolute otherwise.

This method does not use any less space than using QTEMP, since

INDEX was probably stored in a QTEMP to make it available here. The free

indexes, X14 and X15, cannot be used here since they are not guaranteed

across the CALL.

However, if there is no call, X14 or X15 may be used if they

are otherwise available:

CLSUB EQU

SBR

1
B

I
B

*+Xl

X14

0+X14

7+X14

Error return

Normal return

DECK MAKEUP

Complete
Program

6
MON$$

MON$$

16 21
JOB Programmer, project, dept.,room

EXEQ AUTOCODER,,,NOFLG

TITLE Sub-routine name
HEADR for the top of each page
PST if cross-reference listings

desired.
BEGIN See text for format.

Autocoder Statements)

FIN
END

117

Multiple programs may be compiled as part of a single job.

If the NOFLG option is desired on assemblies other than the first of

a job, a card similar to the EXEQ card, but without the "MON$$" or

"EXEQ" should be placed before the TITLE card of each job:

21
AUTOCODER,,,NOFLG

The conventions for assembling AUTOCODER procedures are

outlined in Section II of this volume.

118

EXAMPLES

TITLtOWRlTE 08JUN66 17.13 PAGE

HEADR DWRITE(OWNID)
BEGIN0DWRITE,00l,006

OWNIO
•
ENONC
GPTRL
SCENT
LCCUN
COUNT
ENDZP
GRPPT
FWDLI

25 APRIL 1966 - LJL
9 JUNE 1966 - LJL

EQU QT1

POSITION TO NEXT GROUP OCCURRENCE

PLOC EQU QT2
OC EQU QT3
RY EOU OTA
T EQU SCENTRY-3
ER EQU SCENTRY-7
TR EOU QT5
R EQU QT6
NK FOU QT7

CALL QPOSITIGN,,OWNID
MLC QVALUE,FWDLINK
MLC QVALUE2,GPTRLCC
MLC QVALUE3,SCENTRY
MLC QSTRVAL,GRPPTR
CALL QSEARCHPS,ENDZPTR,GPTRLOCENDVAR GET ENOOFFUE PTR
MLC QSTRVAL,ENONCPLOC SAVE POINTER TO ENDZPTR IN SC STK
CALL QPINDEX,,ENTER»GRPPTR,ZERO,,ENDZPTR

• UPDATE GROUP PTR OF OWNID IN SC STACK
CALL QPINDEX,,ENTER,GPTRLOC,ZERO,OWNIDtENDZPTR
BCE SETSCENT,SCENTRY,N

PUTSCENTRYEQU •♦Xi
• MAKE 9 CROCK ENTRY IN FILE, FIRST ENTRY FOR NEW REPETITION
• OF THIS GROUP

CALL QPINDEX,,ENTER,ENDZPTR,ZERO,,SCENTRY
ZA LCOUNT,COUNTER
CALL QPINOEX,,ENTER,ENDZPTR,ONE,,FWDLINK
MLC QSTRVAL,ENDZPTR
BCE CONTINUE,FWDLINK,N
CALL QPINDEX,,ENTER,FWDLINK,TWC,,QSTRVAL

CONTINE EQU •♦Xl
CALL OP INDEX,,ENTER,ENDZPTR,ONE,,GRPPTR

• ENTER LCOUNT NILS
LOOP EOU •♦XI

CALL QPINDEX,,ENTER,QSTRVAL,ONE,,QN
S Ql,COUNTER
BZ SETECROCK
B LOOP

119

TITLEDWRITE 08JUN66 17.13 PAGE

SETECROCK EOU « + XI
• ENTER EOS(END OF STACK) CROCK, LAST ENTRY

CALL OP INDEX,,ENTER,QSTRVAL,ONE,»ECSCRGCK
• UPDATE ENDZPTRIEND OF FILE PTR) IN SC(SUPERCLA) STACK

CALL QPINDEX,,ENTER»ENDNCPLOC,ZERO,ENDVAR,QSTRVAL
RETRN

SETSCENT EOU »*Xi
• GFT 9 CROCK (LFVEL,LCOUNT,PAR ID) FROH SC STACK

CALL OP INDEX,SCENTRY,EXTRACT,GPTRLOC,MINUSTWO
B PUTSCENTRY
OCW •OOOOOOOOII»

ONE EQU »-UX1
DCW »OOOOOOOOOI«

ZERO EQU •-l+Xl
OCW 'OOOOOOOOKP

MINUSTWO EQU »-UX1
ENTER EQU ONE
EXTRACT EQU ZERO

DCW • 9»
EOSCROCK EQU »-H-Xl

DCW • B2»
fcNDVAR EQU »-1+X1

FIN
END

120

SECTION VI

SYSTEM MESSAGES

INTRODUCTION

The C-10 system consists of many separate routines. For

purposes of classification, these routines are grouped under ten

headings - Arithmetic, Control, Disk Allocation, Input-Output,

PROFILE, P-stack, STEP, STEP Compiler, Stream Control and TAP.

Some of these headings may also contain subheadings. For instance,

the Control routines consist of routines which comprise the C-10

Editor, Executive and Loader - plus many other routines.

Following each message below is an indication of what

routine it came from, and the heading under which the routine

may be found. In some instances, the subheadings are included

in parentheses. Many messages come from more than one routine.

For some, a reference is given to the page(s) in Volume I or II*

where the situation which may have given rise to the particular

message is explained.

Example:

FORMAT ERROR.CHECK PARENTHESIS.

*

FDESC PROFILE(TRANSLATION)

STRUCTURE PROFILE(TRANSLATION)

Page 38

Page 38

*
Except for entries marked Volume II, all page numbers refer to
Volume I.

121

The message FORMAT ERROR.CHECK PARENTHESIS occurs in the

routines: FDESC and STRUCTURE. Both of these routines are part

of the PROFILE translator. Reference is given to The CREATE

DICTIONARY Statement (ESD-TR-66-653, Volume I, Section III).

A dotted line in parenthesis represents variable infor-

mation in the message filled in at the time of the error by the

program detecting the error. When such an insertion begins the

message, the message is listed alphabetically by the word follow-

ing the insertion. An 'I1 preceding the heading indicates a

strictly internal error which should be referred to a system

programmer.

122

MESSAGES

4-ARITHMETIC

A GROUP IS NTT IN THE 0ICT10NARY. Page 38

SUBLOOKUP PROFILE(TRANSLATION)

APOSTROPHE is MISSING. Pages 186, 104

TCHAT PROFILE(TRANSLATION)

APOSTROPHE IS HISSING. PROCESSING WILL CONTINUE. ~ ,„,
Pages 186, 119

HFAPING PROFILE(TRANSLATION)

ARlTHMfcTIC ERRCR-7ER0 WITH NEGATIVE OR ZERO EXPONENT

NPGWER ARITHMETIC

ARITHMETIC FRROR-ARGUMENT CONVERTS OUT OF INTFGRAL RANGE.

FIX ARITHMETIC P^eS l83 > 184

ARITHMETIC FRRCR-CIVI DE BY ZERC.

FOIV ARITHMETIC

123

ARITHMETIC-ARITHMETIC

ARITHMETIC ERROR- IMPROPER ARGUMENT

ADD
•

ARITHMETIC

ADD1 ARITHMETIC

ARCSIN ARITHMETIC

ARITHEQ
m

ARITHMETIC

DIV ARITHMETIC

EXP
•
HOAT

ARITHMETIC

ARITHMETIC

MAX ARITHMETIC
*
MIN ARITHMETIC

MCD ARITHMETIC

MUL
0

ARITHMETIC

PLUS ARITHMETIC

SUB ARITHMETIC
•
SUB1 ARITHMETIC

TIMES ARITHMETIC

ARITHMETIC ERROR- INTEGER RESULT OUT OE RANGE.

ADD ARITHMETIC Pages 183, 184

MUL

SUB

ARITHMETIC

ARITHMETIC

Pages 183, 184

Pages 183, 184

ARITHMETIC ERROR- NEGATIVE ARGUMENT.

SORT ARITHMETIC

124

ARITHMETIC-CALLING

ARITHMETIC ERROR- RESULT CUT OF RANGE.

FAOO ARITHMETIC Pages 183, 184

•
FOIV ARITHMETIC

•
Pages 183, 184

FMUL

0

ARITHMETIC
Pages 183, 184

FSUB ARITHMETIC

• Pages 183, 184

NPOWER ARITHMETIC
Pages 183, 184

ATOM INPUT IS ILLEGAL TYPE- NOT I, H, P, OR L. ATCM I! i IGNORED.

ULOTSI I-PROFILE(EXECUTION)
Page 183

*•!:

BACKSPACE OPERATION EXCEEDS AVAILA8LE LOOKBACK.

INFIELD PROFILF(TRANSLATION)

OUTFIELD PROFILE(TRANSLATION)

BAO ARGUMENT (), CHANGES STOPPED HERE.

CHANGPRCG CONTROL

BAD TAPE ON UNIT (). NO RECOVERY.
■•

SORT PROFILE(EXECUTION)

BUFFER IS NOT AVAILABLE AT THIS TIME.

SPRINT1 PPOFILE(EXECUTION)

CALLING ROUTINE < 1 WHICH HAS NOT BEEN LOADEO.

START I-CCNTROL

125

CARD-OICTIONARY

CARO READER NOT REAOY OR ENPTY. PLEASE SERVICE IT,

EOITOR CONTROL(EDITOR)

PRCARD CONTROL

DATA CHECK ON CARO READER. PRESS START WHEN READY.

EDITOR CONTROUEDITORl

PRCARD CONTROL

DATA CHECK ON CHANNEL ().

CHANGPRCG CONTROL

DATA CHECK OR TIMING CHECK ON PRINTER.

SPRINT PROFILE(EXECUTION)

DATA CHECK. RE-ENTER UNIT RECORD.

CHANGPRCG CONTROL

EOITOR CONTROL

PRCARD CONTROL

DATA OCES NOT AGREE WITH DICTIONARY DESCRIPTION. GIVEN ()• EXPECTS f).

PACK PROFILE<EXECUTION)

DELETE PROCEDURE DOES NOT EXIST.

DELST PROFILE(TRANSLATION)

i) DICTIONARY OOES NOT EXIST.

PDICT PROFILE(TRANSLATION)

126

OICTIONARY-FNTER

I > DICTIONARY IS EMPTY.

CREATE PROFILE(TRANSLATION)

DELST PROFILE(TRANSLATION)

DICTIONARY IS PISSING.

RPLST PROFILE(TRANSLATION)

OICTIGNARY NAPE IS MISSING.

CREATE PROFILE(TRANSLATION) Page 38

DICTIONARY POINTER OOES NOT EXIST

DELST PROFILE(TRANSLATION)

OELSUB PROFILE(TRANSLATION)

DID NOT FIND PARENTHESIS.

FUAS TAP

() () OOES NOT EXIST.

SUPERCLA I-PROFILE(EXECUTION)

END STATEMENT IS MISSING.

CONTROL PROFILE«TRANSLATION) Page 103

ENTER CHANNEL, UNIT OF OUTPUT TAPE,

SYSTAPE CONTROL

ENTER NUM. KEY, AND MESSAGE.

CHANGTFAR CONTROL

127

ENTER-FORMAT

ENTER PROG TO REPLACE AND NEW NAME.

CHANGPROG CONTROL

ENTER STARTING SUBROUTINE.

START CONTROL V°l' IX • Pa§e 36

ERROR IN DICTIONARY DESCRIPTION. NEITHER FIXED NOR VARIABLE TYPE

PACK PROFILE (EXECUTION)

FILE NAME IS MISSING.

COMPLETE PROFILE (TRANSLATION)

*
DELST PROFILE (TRANSLATION)

INSRT PROFILE (TRANSLATION)

PDICT PROFILE (TRANSLATION)

RPLST PROFILE (TRANSLATION)

*
TRENAME PROFILE (TRANSLATION)

Page 61

Page 50

Page 46

Page 52

Page 48

Page 44

FILE NAME MUST BE SPECIFIED IN A WRITE STATEMENT.
♦

PWSUBSET PROFILE (TRANSLATION) Page 113

FORMAT ERROR
♦

RPLST PROFILE (TRANSLATION)

*
TRENAME PROFILE (TRANSLATION)

♦

WHOME CONTROL (LOADER)

Page 48

Page 44

128

Page 38

Page 38

PORMAT-HANDS

FORMAT ERROR I). CHANGES STOPPEO HERE,

CHANGPRCG CONTROL

FORMAT ERROR. CHECK PARENTHESIS.

FOESC PROFILE(TRANSLATION)

STRUCTURE PROFILE(TRANSLATION I

FORMAT ERROR. PART OF STATEMENT MISSING.

BOOLEAN PROFILE(TRANSLATION)

GIVEN IMPROPER ARG

EXTRACT PROFILE(EXECUTICN)

PPGLOB 6TEP COMPILER

TTSUBLCCKUP PROFILE(TRANSLATION)

GIVEN IMPROPER ARG. ELEMENT () DOES NOT EXIST.

TT PROFILE(TRANSLATION)

GROUP NAME CN LEFT HAND SIDE OF CHANGE STATEMENT IS NOT ALLOWED.

TCHANGE PROFILE(TRANSLATION)

Page 90

Page 110

GROUP NAMES CN LEFT HAND SIDE OF ASSIGNMENT STATEMENT ARE NOT ALLOWEO.

ASSIGNMENT PROFILE(TRANSLATION)
Page 62

HANOS OFF THE INQUIRY REQUEST BUTTON

READ INPUT/OUTPUT

129

J

HE-E-L-LP-ILLEGAL

HE-F-L-LP

SUPERTRACE I-CCNTRCL

ILLEGAL A-STACK REQUEST INVOLVING ORDERING OF FILE OATA

CLEANSCRT I-PROFILE(EXECUTION)

ILLEGAL DEVICE NA^E.

TINPUT PROFILEURANSLATION)

• Page 75
TPUTPUT PROFILE(TRANSLATICN)

Page 93

ILLEGAL EDIT COMND. EDITING TERMINATED.

EDITCOMC CCNTRCL

ILLEGAL FIELD OPERATION.

TFIELD PROFILE(TRANSLATION)

Page 174

Pages 81, 98

ILLEGAL FIELD OPERATION AFTER N OR NOT.

TFIELD PROFILE(TRAN'SLATION)

Pages 83, 95

ILLEGAL ICCS PARAMFTERS. ARGl • <). ARG2 * (). ARG3 = (). I/O NOT
EXECUTED.

IOMES INPUT/OUTPUT

ILLEGAL NAME IN INPUT STATEMENT.

TINPUT PROFILElTRANSLATION)

Page 75

130

Page 111

ILLEGAL-INCORRECT

ILLFGAL SORT SPECIFICATIONS.

SORT PROFILE(TRANSLATION)

ILLFGAL UNIT NUMB FOR OIN OR QCUT. N*l)•

IOMES INPUT/OUTPUT

IMPROPER BOOLEAN FOLLOWING-IF- IN SUBSET STATEMENT

GSDLIST PROFILE(TRANSLATION)
Page 90

PSDLIST PROFILE(TRANSLATION)

Page 90

IMPROPER EXPRESSION FOLLOWING = IN SUBSET STATEMENT.

PSOLIST PROFILE(TRANSLATION)
Page 88

IMPROPER GLOBAL CONTENTS FOR SCLAMG. CROCK CONTENTS ARE (). TYPE COOE
IS (—-).
•
UNSUPERC I-PROFILE(EXECUTION)

IMPROPER GO FORM.

EVAL STEP Vol. II, p. 97

INCORRECT DATA - ALPHANUMERIC TYPE WITH FIXEC LENGTH ZERO.

PACK PROFILE(EXECUTION)

INCORRECT DATA - BLANK LITERAL.

PACK PROFILE(EXECUTION)

131

INCORRECT-INVALID

INCORRECT FORMAT

CSACTOR TAP

CSFIN TAP

INCORRECT FORMAT. CANNOT MAKE DEFINITION
*
DACTOR TAP

INCORRECT FORMAT. UNEXPECTED RIGHT PARENTHESIS FOUND.
*
SETUPT TAP

INCORRECT PUNCTUATION.

RPLST PROFILE (TRANSLATION) Page 48
*
TRETURN PROFILE (TRANSLATION) Page 107

INPUT DATA EXHAUSTED. LOOKING FOR MORE..

INFIELD PROFILE (TRANSLATION)

INQUIRY CANCEL.
*
EDITOR CONTROL (EDITOR)

INQUIRY CANCEL. REPEAT INPUT.

IOMES INPUT/OUTPUT

INPUT OR OUTPUT IS MISSING.

SPACING PROFILE (TRANSLATION)

INVALID ARGUMENT.

INFIELD PROFILE (TRANSLATION)

OUTFIELD PROFILE (TRANSLATION)

Pages 79, 95

132

INVALID-INVALID

INVALID BOOLEAN WITHIN CONDITIONAL.

CONDITION PROFILE(TRANSLATION)

Page 90

INVALID CALL TO PROCEDURE OR UNDECIPHERABLE EXPRESSION.

UO PROFILE(TRANSLATION)
Pages 88, 109

INVALID CROCK. EXPECTS A STREAM POINTER.

INFIELD PROFILE(TRANSLATION)

OUTFIELD PROFILE(TRANSLATION)

INVALID EXPRESSION

DEFLOGl PROFILE(TRANSLATION)

TCHANGE PROFILE(TRANSLATION)

EXPRESSIO PROFILE(TRANSLATION)

SUBBOOL PROFILE(TRANSLATION)

Page 88

Page 88

Page 88

Page 88

INVALID EXPRESSION. FOR PAGE. PROCESSING WILL CONTINUE.

HEADING PROFILE(TRANSLATION)

Page 88

INVALID EXPRESSION USED AS INPUT ARGUMENT TO PROCEDURE OR FUNCTIGN.

DO PROFILE(TRANSLATION)
Page 88

INVALID KEY WORD FOR TERSE DEFINITION

SETUPT TAP

133

INVALID-INVALID

INVALID KEYWORD. WILL CONTINUE.
*
HEADING PROFILE (TRANSLATION)

INVALID NAME IN AN OUTPUT STATEMENT

TOUTPUT PROFILE (TRANSLATION)

INVALID NAME IN CHANGE STATEMENT.
*
TCHANGE PROFILE (TRANSLATION)

INVALID NAME IN VARIABLE DECLARATION

VDECLARAT PROFILE (TRANSLAT ION)

INVALID PROPERTY-NAME IN SORT STATEMENT.
*
TSORT PROFILE (TRANSLATION)

INVALID PROPERTY-NAME IN SUBSET STATEMENT.

PSDLIST PROFILE (TRANSLATION)

INVALID PSTACK VALUE
*
GETATOM TAP

INVALID RELATION.

SUBBOOL PROFILE (TRANSLATION)

Page 93

Pages 35-37, 110

Pages 35-37, 72

Pages 35-37, 111

Pages 35-37, 113-119

Page 90

134

INVALID-NEYWORO

INVALID SIMPLE GROUP TYPE

GETATOM TAP

INVALID STATEMENT FOLLOWING ELSE WITHIN CONDITIONAL.

CONDITION PROFILE(TRANSLATION)

INVALID STATEMENT WITHIN CONDITIONAL.

CONDITION PROFILE(TRANSLATION)

INVALID Z-PGINTER

GETAPATCM

SETHIT TAP

() IS NOT DEFINED IN THE CURRENT P-STACK.

NILLIST I-PROFILE(EXECUTION)

CLEANUP I-PROFILE(EXECUTION)

I) IS NOT IN {) DICTIONARY.

CREATE PROFILE(TRANSLATION)

DELST PROFILE(TRANSLATION)

INSRT PROFILE(TRANSLATION)

Page 102

Page 102

Page 50

Page 46

KEYWORD -BUT- IS MISSING. PROCESSING WILL CONTINUE.

RPLST PROFILE(TRANSLATION)

KEYWORO -FOR- IS MISSING.

CREATE PROFILE(TRANSLATION)

0EFL0G1 PROFILECTRANSLATION)

135

KFYWORD-LITERAL

KEYWORD -LEOB, LECP, OR LEOI- IS MISSING.

OEFLOG1 PROFKE(TRANSLATION)

KEYWORD -INPUT OR OUTPUT- IS MISSING.

DEFLOG1 PROFILE(TRANSLATinN)

Pages 77, 95

Pages 77, 95

KEYWORD -OR- IS MISSING. PROCESSING WILL CONTINUE.

INSÄT PROFILEURANSLATICN)

KEYWORD -TO- MISSiNC IN CHANGE STATEMENT. Page 110
•
TChANGE PROFILE(IRANSLATION)

LEGAL FIELD OPERATION ON LEFT-HAND SIDE OF ASSIGNMENT STATEMENT MT FOLLOWED
IMMEDIATELY BY AN EÜUAL SIGN (=).
•
ASSIGNMENT PROF ILE(TRANSLAT ION)

Page 98

LINE (»-ILLEGAL CHARACTER USED IN INPUT - GRCUP MAKK, RECORÜ MAKK OR TAPE
SEGMENT CHARACTER.
•
EDITSEG CCNTRCL(EDITOR)

Page 181

LINF ()- ILLEGAl NUMERIC FIELD, i > WAS INTERPRETFC AS t).

LDITSEG CCNTRCL(FDITOR)

Page 183, 184

LINE I) TOO LONG. IGNORED.

EDITOR CCNTROL(EOITOR)

LITERAL IS TOO LONG

GFTATOM TAP

Page 172

136

NC-CNLY

NO GROUP NAHE SPECIFIED.

TCLOSE PROFILE(TRANSLATION)

Pages 35-37, 58

NO GROUP NAHE SPECIFIEO. PROPERTY NAHE SPECIFIEO INSTEAD OF GROUP NAME«

TCLOSE PROFILEITRANSLATION)

Pages 35-37, 58

NON-GROUP NAHES NCT ALLOWED IN WRITE STATEMENT.

wrtITt PROFILE(TRANSLATION)

NC STATEMFNT FOLLCWING LABEL.

LABELED PROFILE(TRANSLATION)

() NCT DEFINED.

XLSTEP STEP COMPILER

NOTE - THE NAME () WAS ALREADY DEFINED.

CHANGPRCG CCNTROL

I) CN CHANNEL < —) NOT READY. READY IT.

IOPFS INPUT/OUTPUT

Pages 35-37, 61

Page 101

ONLY GRCUP NAHES HAY BE USED IN RFAC CR PROCESS STATEHENTS.

TREAD PROFILE(TRANSLATION)

Pages 35, 55, 120

137

ONLY-POINTER

ONLY VARIABLES DECLARED IN A VARIABLE DECLARATION STATEMENT MAY BE USED AS
OUTPUT ARGUMENTS TO A PROCEDURE OR FUNCTION.
*
DO PROFILE (TRANSLATION)

Pages 72, 109

NUMBER OF ARGUMENTS EQUAL ZERO. ARGUMENTS ARE EXPECTED.
*
EVAL STEP

NUMBER OF ARGUMENTS AND NUMBER OF INPUT VARIABLES IN A PROCEDURE DO NOT AGREE.
*
EVAL STEP

OVER 10 ARGS.

EVAL STEP

PARENT GROUP () FOR OWNID () NOT CURRENTLY OPEN.
*
POSITION PROFILE (TRANSLATION)

PARENTHESIS PROBLEM IN SUBSET STATEMENT.
+

GSDLIST PROFILE (TRANSLATION)

*
PWSUBSET PROFILE (TRANSLATION)

PLEASE REPORT . . .
♦

TERROR l-PROFILE (SPECIAL TOOLS)

() POINTER DOES NOT EXIST.
*
INSRT PROFILE (TRANSLATION)

Pages 113-119

Pages 113-119

Page 46

138

PRINTER-PROPERTY

PRINTER NCT READY. PLEASE SERVICE IT,

PRCARD CCNTRGL

PROIR CCNTROL

PROCEDURE () HAS REEN DEFINED.

DEFINE STEP

DEFINEF* STEP

PROCEDURE <) WAS FORMERLY A RELOCATABLE PRCGRAM. THF PROGRAM WILL BE THE
PFRMANENT ENTRY.
•
DEFINE STEP

DEFINEFM STEP

PROPERTY NAME IS MISSING.

DFLST PROFILE(TRANSLATION)

RPLST PROFILEtTRANSLATICN)

Page 50

Page 48

PROPERTY NAME MENTIONED BEFORE OPENING FILE.

TSORT PROFILF(TRANSLATION)

Page 111

PROPERTY NAKE MENTICNED WITHOUT SUFFICIENT PRECEDING READ STATEMENTS.

TSORT PROFILE(TRANSLATION)

Page 111

PROPERTY NAME CK LEFT-HANO SIOE OF ASSIGNMENT STATEMENT WHOSE PARENT GROUP
HAS NCT BEEN MENTIONED IN A WRITE STATEMENT.
•
ASSIGNMNT PROFILE(TRANSLAT ION)

Page 62

139

PROPERTY-SEARCH

PROPERTY NAME SPECIFIED INSTEAD OF GROUP NAME.

TCLOSE PROFILE (TRANSLATION) Pages 35 58

(—) READY.
*
EDITOR CONTROL (EDITOR)

READY BUFFER UNITS 1, 2, 3, 4. OPEN R/W FILE LIST.
*
SUPERLOC PROFILE (TRANSLATION)

READY PUNCH
*
WHOME CONTROL (LOADER)

RELOAD FROMTAPE. .
*

C-10 LOADER CONTROL (LOADER)

RETURN TO COLINGO EXEC.
*
START CONTROL

REWIND IS NECESSARY.
*
TINPUT PROFILE (TRANSLATION)

Page 75

RIGHT HAND SIDE OF ASSIGNMENT STATEMENT NOT A LEGAL EXPRESSION.
*
ASSIGNMENT PROFILE (TRANSLATION)

Page 88

TFIELD PROFILE (TRANSLATION)

Page 88

SEARCH FOR OWNID (—) IN SUPERCLA STACK YIELDS UNDEFINED.

POSITION PROFILE (TRANSLATION)

140

SECCWD-SVSTEM

StCCNO DICTIONARY NAHE IS HISSING.

CRFATE PROFILE(TRANSLATION)

Page 38

SFHI-CCLON IS HISSING AT FNO OF BOOLFAN MITHIN CONDITIONAL.

CC1NOITICN PROFILE(TRANSLATION)

SFHI-CCLON IS HISSING AT ENO OF STATEHENT. PROCESSING WILL CONTINUE.

CTNTROl PROFILE(TRANSLATION)

SCMT-CCLCN IS HISSING AT FND OF STATEMENT WITHIN CONDITIONAL.

CONDITION PROFILE(TRANSLATION)

SIGN - FOLLCWEO BY INPUT INSTEAD OF NUHBER. SIGN IS IGNORED.

OLOTSI PROFILE(TRANSLATION)

SORRY-THERE IS NO LARGE BUFFFR AVAILABLE. AN ENDCIO HUST BE GIVEN AFTER THIS
RUN TO MAKE THE DEFINE PERMANENT,
•
DEFINE STEP

DEFINEFM STEP

STATEMENT FORMAT FRROR. PROCESSING WILL CONTINUE.

CONTROL PROFILE(TRANSLATION)

SYNTAX FRROR IN SORT STATEMENT.
»
TSORT PRDFILE(TRANSLATION)

Page 111

SYSTEM ERROR. PUNTING ADVISEO.

EDITCOMP I-CCNTROL(EDITOR)

141

THE-UNARLE

THE ARGUMENT TO DEFINE IS NIL, NOTHING HAS BEEN OFEINEC.

DEFINF STFP

DEFINEFM STFP

THE STRUCTURE OF THIS DEFINE OPERATION IS BAC. IT HAS NCT BEEN DEFINED. <)

DEFINE STEP

DEFINEFM STEP

THERE IS NO RCOM IN THE SUBROUTINE CIRECTORY. PROCEDURE () HAS NOT BEEN
LOADED.
•
FINDPRCC STEP

TOO MANY ARGUMENTS FOR TERSE.

SETUPT TAP

TOO MANY ALT. BLANKS. LINE () ICNCREC.

EDITOR CCNTRCL(EDITOR)
Page 174

UNABLE TO FIND STREAM ASSTCIATEC WITH ().

PACK PROFILE(EXECUTICN>

UNABLE TO LCCATE (). CHANGES STCPPED HERE.

CHANGPRCG CCNTROL

UNABLE TO PROCESS MORE THAN I PAGE AT PRESENT TIME. ANYMORE ENTRIFS WILL
BE REJECTFD.
•
SPRINT1 PROFILE(EXECUTICN)

142

UNACCEPTABLE-UNRECOGNIZA

UNACCEPTABLE LABEL IN A GO-TO STATEMENT.

GOTO PROFILE (TRANSLATION) p ^Q^

UNDEFINED FORM-FUNCTION

EVAL STEP

UNMATCHED LEFT PARENTHESIS IN ARGUMENT LIST OF PROCEDURE OR FUNCTION

DO PROFILE (TRANSLATION)

UNMATCHED TERMINATE STATEMENT.
*
TERMINATE PROFILE (TRANSLATION)

UNNECESSARY FILE-NAME SPECIFIED.

PWSUBSET PROFILE (TRANSLATION)

UNPAIRED BRACKETS.
*
SIMBOOL PROFILE (TRANSLATION)

UNRECOGNIZABLE FILE-NAME IN SUBSET STATEMENT.
«
PWSUBSET PROFILE (TRANSLATION)

Page 109

Page 123

Pages 113-119

Pages 113-119

143

UNRECCGMZABLE-Z-STACK

UNRFCCGMZABLE GRCUP-NAME IN SCRT STATEMENT.

TSPRT PROFILE(TRANSLATION)

Page 111

UNRFCOGNIZABIE NAME IN REAO OR PROCESS STATEMENT.

TPROCESS PROFILE«TRANSLATION)

TREAD PROFILE(TRANSLATION)

fcRCNG LENGTH RECORD TO PRINTER.

SPRINT PROFILE(EXECUTICN)

Z-STACK FHPTY OR NCN-EXISTENT.

PPGL08 STEP COMPILER

Page 120

Page 55

144

APPENDIX I

SUMMARY OF LOADING INSTRUCTIONS

Summary of Loading Instructions References

From Card From Tape

1. Clear core, rewind tape (if tape is being used)

2. Ready proper deck setup in card reader. pp 11, 12, 13 p 15

3. Enter and execute bootstrap instruction, p 14 p 16

4. Make necessary changes in configuration, pp 17-28 pp 17-28

5. Initialize. PP 32-36 p 36

Summary of Operating Instructions

1. If loading has just been completed, skip

to step 4.

2. Ready bootstrap card in card reader. p 33

3. Enter and execute bootstrap instructions. p 38

4. If STEP - PROFILE are to be used, type 237. pp 38, 39

145

APPENDIX II

C-10 1301 - 1311 DISK ADDRESSES

The process for converting 1301 disk addresses to 1311 disk

addresses is described as follows.

First a relative 1301 disk address is computed with the

formula:

A2M2T2H2 = A1M1T1H1 " BASE

where

A - original access number

M.. = original module number

T ■ original track number

H- ■ original HA2 number

A? - relative access number

M *■ relative module number

T ■ relative track number

H- c relative HA2 number

BASE a lowest 1301 disk control field to be
converted to 1311 control field.

Then the 1311 section address ,S, is computed with the

following formula (using integer division):

S - X + 2(X/198)

where

X = 6(4(T2)-tH2)

146

APPENDIX III

STEP IN BACKUS NORMAL FORM

< name > :: - defined in ESD-TR-66-653, Volume I, Section V
(The Editor)

< literal > :: - defined in ESD-TR-66-653, Volume I, Section v
(The Editor)

< integer > :: = defined in ESD-TR-66-653, Volume I, Section V
(The Editor)

< floating point number > :: ■ defined in ESD-TR-66-653, Volume I,
Section V (The Editor)

< number > :: ■ < floating point number > | < integer >

< expression > :: ■ < name > | < number > | < literal > |

< procedure form > |

< prog form > |

< if form > |

< cond form > |

< go form > |

< return form > |

< assign form > |

< quote form > |

< define form > I
< atom form >

< procedure form > :: ■ (< procedure name > < expression list >)
(< autonomous procedure name >
< expression list >)

147

< expression list > :: = () (< stripped expression list >)

< stripped expression list > :: ■ < expression > | < expression >
< stripped expression list >

< autonomous procedure name > :: ■ (FUNCTION < name list > < expression >)
(FORM < name list > < expression >)

< prog form > :: ■ (PROG < name list > < expression list >)

< cond form > :: ■ (COND < sequent list >)

< sequent list > :: ■ (< sequent >) (< sequent >) < sequent list >

< sequent > :: ■ < expression > < expression >

< if form > :: = (IF < sequent >)

< go form > :: = (GO < name >)

< return form > :: - (RETURN < expression >)

< assign form > :: = (ASSIGN < name > < expression >)

< quote form > :: ■ (QUOTE < number >) (QUOTE < list >) I QUOTE < number > |
QUOTE < list >

< atom form > :: - (ATOM < name >) (ATOM < number >) | ATOM < name > |
ATOM < number >

< list >::■() (< sequence >)

< sequence > :: - < sequence element > I < sequence element > < sequence >

< sequence element > :: ■ < name > | < number > | < list >

< name list >::=() (< name sequence >)

< name sequence > :: = < name > | < name > < name sequence >

< define form > :: = (DEFINE < definition sequence >)

< definition sequence > :: = < definition > | < definition >
< definition sequence >

< definition > :: = (< procedure name > (FUNCTION < name list >
< expression >)) (< procedure name >

(FORM < name list > < expression >))

148

INDEX

This index to the COLINGO C-10 USERS' MANUAL contains references
to both volumes.

A reference, then, consists of the volume number followed by the
page numbers.

149

ABS-CON

absolute (A) subroutines, II 110
actor, I 12; II 39
ADAM, I 2,12
alternate structuring, I 28
argument fetching, I 73
argument list, I 106
arguments, I 18

specifications, I 63
name, I 64

arithmetic routine, II 121
ascending key, I 111
ASSIGN form, I 98
ASSIGNMENT statement

first form, I 62
second form, I 73
third form, I 92,98
fourth form, I 107

association list - A stack, II 81
ATOM form, II 86
atoms, I 171,181,183

integers, I 183
floating point numbers, I 183
literals, I 171,186
identifiers, I 171,184

attributes, I 38
AUTOCODER, I 10; II 39,100,102,

105,115,117,118
autonomous procedure names, II 91
AUTO START, II 20

B

BACKUS normal form, I 34,189
BEGIN, II 110, 117
block management, II 107
blocks, I 14,76,94
Booleans, I 90,102,114,115
bootstrap card, II 17,36,38
bootstrap instruction, II 10
BREG, II 115,116

CALL, II 111,116,117
calls, II 106,115
CARD READER, II 20
CHANGE statement, I 110
CHANGTEAR, II 113
character set, I 181
character string, I 13,24,33
CLASSIFICATION verb (COLINGO D) I
CLEAR, II 20
CLOCK, II 20
CLOSE statement, I 58
CLSUB, II 115,116,117
COBOL metalanguage, I 34,203
COLINGO A,B,C,D,D-10, I 1
COLINGO C-10, I 1

external views, I 3
internal views, I 10

COLINGO-D, I 2,146
commands, I 174

positioning, I 175
editing, I 177

COMMENCE statement, I 123
COMMENT statement, I 104
COMPLETE statement, I 61
COMPOUND statement, I 103
COND form, II 94
conditional sequence actor (CS),
II 74,77

CONDITIONAL statement, I 102
configuration, II 2

minimum, C-10, I 10; II 2
variations in, II 6
instructions, II 17
changes, II 20

CONSOLE, II 20
CONTINUE statement, I 104
control routine, II 121
CONTROL statements, I 101
control verbs, I 169

COMMENT (COLINGO-D), I 169
PAUSE, I 169
EXECUTIVE, I 169

157

150

CO-PRO-EXT

C (Cont) D (Cont)

co-processing, II 40,79
CORE SIZE, II 20
CREATE DICTIONARY statement, I 38
CRITERION statement
(COLINGO-D), I 151

crock, II 85,105,107
crock formats, II 105
CSACTOR subroutine, II 77
CURATOM, II 62
cursor, I 13,24,27,33,58

cursor values, I 59
cursor operator, I 59

CURSOR (fn), I 89
CURTAPAT0M, II 62

D

data flow, I 15
data management system, I 3
data structures, I 1
data transfer verb, I 159

special
COMPUTE, I 165
HOLD, I 166

general
CHANGE, I 159
WRITE (MERGE), I 159
DUPLICATE, I 159
ANALYZE, I 163
SORT, I 163

deck make up, II 117
DEFINE form, II 99
DEFINE 1/0 DEVICE statement, I 77
DEFINE UNIT statement

first form, I 76
second form, I 94

DELETE, II 20
DELETE FILE statement, I 53
DELETE STRUCTURE statement, I 50
delimiter list, II 69
descending key, I 111

DESCRIBE, II 20
devices, C-10, II 3

optional, II 3
dictionary, I 21,23,33,38

retrieval, I 150
direction indicator, I 111
directory, I 28
DISK 1301, II 20
DISK 1302, II 20
DISK 1311, II 20
disk allocation routine, II 121
disk usage, C-10, II 5
DISPLAY DICTIONARY statement, I 50
DISPLAY STRUCTURE statement, I 52
DO statement, I 109
DT (almost an actor), II 78
DTG verb (COLINGO D), I 157
dynamically relocatable, I 105
dynamic subroutine relocation,
II 107,109,115

edit, to, I 172
Editor, C-10, I 35,171; II 60
ELSE, I 102
end word list, II 67

exclusive end word list, II 68
ENTER STARTING SUBROUTINE message,
II 36

EQU, II 114,117
ERROR, II 116
EVAL (function), II 62,77
EXEQ, II 114,117,118
EXIT, II 116
exits, I 18
experimental mode, II 39
experimental systems, I 19
expressions, I 88
EXTRACT, I 60

151

FAL-LOC

I (Cont)

FALSE, II 74
file, I 2,13,21

read, I 54
written, I 54
selection, I 147

file-oriented statements, I 2
file processing, I 26,28
FIN, II 112
FINISHED, II 20
floating point, 183,183,13,24,33,88
form arguments, II 89
form forms, II 88
forms (F) subroutines, II 110
FORTRAN, II 107
free format, I 40
function, II 88
functional modularity, I 9

INDEX (fn), I 89
index register, II 109,113,115

symbolic, II 114
absolute, II 114

initialization process, II 35
INITIALIZE INPUT statement, I 75
INITIALIZE OUTPUT statement, I 93
input-output routine, II 121
INPUT statement, I 75
input statement, II 20
inquiry request button, II 20
INSERT STRUCTURE statement, I 46
instrumentation, I 19
integer, I 183,13,24,33,88
IOCS, II 110
items, I 76,94

K

generated symbol list, II 70
GETAPATOM (function), II 62
GETATOM (function), II 62
global locations, I 19; II 62
GO form, II 97
GO TO statement, I 101
group, I 13,22,24,33
group property, I 38

H

HEADR, II 117
HELP, II 20

identifier, I 184,35
IF form, II 93
IF, IF/C, IF/NOT verbs

(COLINGO D), I 151
INDEX, II 116,117

key word list, exclusive, II 64
key word list, inclusive, II 66

LABELED statements, I 101
large program problem, I 8
LENGTH, I 100
LEOB, I 77,95
LEOI, I 77,95
LEOP, I 77,95
line, I 172
linkage, I 18

intermediate linkage routine, I 18
system linkage mechanism, II 105

LISP, II 80
lists, I 14
literal, I 186, II 84
literal string, I 88
loading, II 107

subroutine II 107
loading instructions, II 10
LOC, II 108

152

M -QST

M P (Cont)

M flags, II 114
MACROS, I 12; II 109
message, I 173

end of, I 182
minimum configuration, C-10, II 2
MISSING actor, II 74
missing argument replacement, II 66
modular machine language

procedures, II 105
modularity, I 19
M0N$$, II 117
multiple key words, II 73

N

name, II 85
names, I 35

file, I 35
group, I 35
property, I 35

NO. TAPES, II 20
nodes and lines, I 21
NOFLG, II 114,117,118
noise word list, II 69
non-group property, I 38,39
null argument, II 73
null string, II 72
number, II 84

objects, I 3
operating procedures, II 36
OUTPUT statement, I 93
output verbs (C0NLING0-D), I 156

PHOENIX, I 2
pointer, I 74,92
PR-155 autocoder assembly

program, II 114
pre-processing, II 40,79
primitive procedures, I 1,20
PRINTER, II 20
printing a subset, I 113
PRINT SUBSET statement, I 116
procedure, I 5

C-10, I 105
internal, I 15
recursive, I 18
machine language, I 19
hard, II 39
soft, II 39

procedure base, I 17
PROCEDURE DECLARATION

statement I 106
procedure form, II 87
procedure framework, I 17
PROCESS statement, I 120,147
production mode, II 39
production system, I 19
PROFILE, I 3,10,26,34; II 39,102
profile routine, II 121
PROG form, II 95
property description, I 40
property value, I 13,22

specifications, I 114
length of, I 24,33

PST, II 117
P-stack routine, II 121
PUNCH, II 20
pushdown list, II 109,113,106
pushdown stacks (P-stacks) I 14;

II 62

padded, I 39
pages, I 76,94
parenthetically well-formed

strings, II 71
PAUSE statement, I 104

QARGL, II 106
QL0TSI, II 77
QSTRVAL, II 107

153

Q- TEA

Q (Cont) S (Cont)

Q-symbols, II 108
QTEMP, II 105,106,107,110,115
QTEMP registers, II 109
QTOGGLE, II 113
queries, I 1
QUOTE form, II 86
QVALUE, II 106,107
QVALUE2, II 107
QVALUE3, II 107

raw data, I 3,10
READ statement, I 55,147
READY PUNCH, II 27,31
recursive, II 105
recursiveness, II 109
re-initialization II 35
relocatable subroutine

controller, II 8
relocatable subroutines in

C-10, II 105
REMARK statement, I 53
RENAME statement, I 44
repeat word list, II 70
repetitions, I 27,33
REPLACE STRUCTURE statement, I 48
RESC, II 106,107,108,110,113
RETURN, II 111
RETURN form, II 98
RETURN statement, I 107,154
returns, II 106,115

skeleton, II 61,67
SORT, statement, I 111
SPACING statement

first form, I 79
second form, I 95

statements, I 34
file manipulation, I 32

STEP, I 10; II 39,61,80,100,102
STEP actor, II 75
step compiler routine, II 121
STEP expression, II 61,84,102
STEP interpreter, II 80
STEP procedures, II 80,100
step routine, II 121
STC0MAS subroutine, II 78
stream control, II 121
stream of characters, I 74
stream pointer, II 89
streams, I 14

input, I 74,76
output, I 93,94

string properties, I 25
stripping, II 72
structure, I 3
SUB modifier (CONLINGO-D), I 157
subroutine control, II 106

closed subroutine, II 115
subset description, I 114
SUBSET FORMAT statement, I 119
SUBSET statement,, I 113,147
system framework, I 8

rules, I 9
system messages, II 121-144
system output device, I 104

segment definitions, I 79,96
segment, to, I 172
segmentation, I 181
self modification, II 108,109
sequential processing, I 27,33
SET statement, I 59
SETUPT (function), II 62

TAP, II 121
tapatom, II 77
TAPE, I 94
TAPE SELECT, II 20
TEARS, II 112

154

TEM-XB

T (Cont)

temporary storage locations, I
terminal property, I 22,111
TERMINATE statement, I 123, 154
terse, I 12; II 39

definitions, II 63
terse form, II 67
main terse, II 72
secondary terse, II 72

terse/actor processor -
TAP, I 12,113; II 60

timing instrumentation, I 19
TITLE verb (COLINGO-D), I 157
tracing, II 103
trailers (not described), I 164
TRANS actor, II 75
tree diagram, I 21
TRUE, II 74

18 value, I 6
VARIABLE DECLARATION statement, I 72
variables, I 72

W

WRITE statement, I 61
writing a subset, I 113

XI, II 107,113,115,116,117
X2, II 113
X3 - X13, II 113
X14, X15, II 113
XA, II 115
XB, II 115

U

unformatted data, I 15
UNIT, I 94
unit record, I 172

correction, I 173
end of, I 182

unstructured data, I 15
utility procedures, I 1

155

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report hi classified)

1 ORIGINATING A c T i v i T Y (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
26. GROUP

N/A
3 REPORT Tl TLE

COLINGO C-10 USERS' MANUAL -- VOLUME II

4 DFSCRIF rivE NOTES (Type of report and inclusive dates)

N/A
5 AUTHORIS) (First name, middle initial, last name)

COLINGO Project

6 REPORT DATE

May 1968
7B. TOTAL NO. OF PAGES

162
7b. NO. OF REFS

0
8a. CONTRACT OR GRANT NO.

AF 19(628)-9165
b. PROJEC T NO.

512V

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-66-653, Vol. II

9b. OTHER REPORT NOIS) (Any other numbers that may be assigned
this report)

MTR-35
10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

i2 SPONSORING MILITARY ACTIVITY Air Force Command
and Management Systems Division, Deputy for
Command Systems, Electronic Systems Divisior
L. G. Hanscom Field. Bedford. Mass.

11. SUPPLEMENTARY NOTES

N/A

13. ABSTRAC T

The COLINGO C-10 Users' Manual, a combination of tutorial and reference
material, is presented in two volumes. This volume contains information on
machine configurations, procedures for operating and loading the system, a
description of the C-10 general purpose macro facility (terses and actors), a
guide to the STEP language, a set of instructions for preparing machine
procedures, and a list of system error messages.

DD ,F°1M„1473
Security Classification

Security Classification

KEY WO RDS

ROLE AT

PROFILE

PROGRAMS

STATEMENTS

Security Classification

*' -

